Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

Related tags

Deep LearningGMR
Overview

GMR(Camera Motion Agnostic 3D Human Pose Estimation)

This repo provides the source code of our arXiv paper:
Seong Hyun Kim, Sunwon Jeong, Sungbum Park, and Ju Yong Chang, "Camera motion agnostic 3D human pose estimation," arXiv preprint arXiv:2112.00343, 2021.

Environment

  • Python : 3.6
  • Ubuntu : 18.04
  • CUDA : 11.1
  • cudnn : 8.0.5
  • torch : 1.7.1
  • torchvision : 0.8.2
  • GPU : one Nvidia RTX3090

Installation

  • First, you need to install python and other packages.

    pip install -r requirements.txt
  • Then, you need to install torch and torchvision. We tested our code on torch1.7.1 and torchvision0.8.2. But our code can also work with torch version >= 1.5.0.

Quick Demo

  • Download pretrained GMR model from [pretrained GMR] and make them look like this:

    ${GMR_ROOT}
     |-- results
         |-- GMR
             |-- final_model.pth
    
  • Download other model files from [other model files] and make them look like this:

    ${GMR_ROOT}
     |-- data
         |-- gmr_data
             |-- J_regressor_extra.npy
             |-- J_regressor_h36m.npy
             |-- SMPL_NEUTRAL.pkl
             |-- gmm_08.pkl
             |-- smpl_mean_params.npz
             |-- spin_model_checkpoint.pth.tar
             |-- vibe_model_w_3dpw.pth.tar
             |-- vibe_model_wo_3dpw.pth.tar
    
  • Finally, download demo videos from [demo videos] and make them look like this:

    ${GMR_ROOT}
    |-- configs
    |-- data
    |-- lib
    |-- results
    |-- scripts
    |-- demo.py
    |-- eval_3dpw.py
    |-- eval_synthetic.py
    |-- DEMO_VIDEO1.mp4
    |-- DEMO_VIDEO2.mp4
    |-- DEMO_VIDEO3.mp4
    |-- DEMO_VIDEO4.mp4
    |-- README.md
    |-- requirements.txt
    |-- run_eval_3dpw.sh
    |-- run_eval_synthetic.sh
    |-- run_train.sh
    |-- train.py
    

Demo code consists of (bounding box tracking) - (VIBE) - (GMR)

python demo.py --vid_file DEMO_VIDEO1.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO2.mp4 --vid_type mp4 --vid_fps 30 --view_type front_large --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO3.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO4.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

Data

You need to follow directory structure of the data as below.

${GMR_ROOT}
  |-- data
    |-- amass
      |-- ACCAD
      |-- BioMotionLab_NTroje
      |-- CMU
      |-- EKUT
      |-- Eyes_Japan_Dataset
      |-- HumanEva
      |-- KIT
      |-- MPI_HDM05
      |-- MPI_Limits
      |-- MPI_mosh
      |-- SFU
      |-- SSM_synced
      |-- TCD_handMocap
      |-- TotalCapture
      |-- Transitions_mocap
    |-- gmr_data
      |-- J_regressor_extra.npy
      |-- J_regressor_h36m.npy
      |-- SMPL_NEUTRAL.pkl
      |-- gmm_08.pkl
      |-- smpl_mean_params.npz
      |-- spin_model_checkpoint.pth.tar
      |-- vibe_model_w_3dpw.pth.tar
      |-- vibe_model_wo_3dpw.pth.tar
    |-- gmr_db
      |-- amass_train_db.pt
      |-- h36m_dsd_val_db.pt
      |-- 3dpw_test_db.pt
      |-- synthetic_camera_motion_off.pt
      |-- synthetic_camera_motion_on.pt
  • Download AMASS dataset from this link and place them in data/amass. Then, you can obtain the training data through the following command. Also, you can download the training data from this link.
    source scripts/prepare_training_data.sh
    
  • Download processed 3DPW data [data]
  • Download processed Human3.6 data [data]
  • Download synthetic dataset [data]

Train

Run the commands below to start training:

./run_train.sh

Evaluation

Run the commands below to start evaluation:

# Evaluation on 3DPW dataset
./run_eval_3dpw.sh

# Evaluation on synthetic dataset
./run_eval_synthetic.sh

References

We borrowed some scripts and models externally. Thanks to the authors for providing great resources.

  • Pretrained VIBE and most of functions are borrowed from VIBE.
  • Pretrained SPIN is borrowed from SPIN.
  • SMPL model files are borrowed from SPIN and SMPLify.
Owner
Seong Hyun Kim
M.S. student in CVLAB, Kwang Woon University
Seong Hyun Kim
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022