Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

Related tags

Deep LearningGMR
Overview

GMR(Camera Motion Agnostic 3D Human Pose Estimation)

This repo provides the source code of our arXiv paper:
Seong Hyun Kim, Sunwon Jeong, Sungbum Park, and Ju Yong Chang, "Camera motion agnostic 3D human pose estimation," arXiv preprint arXiv:2112.00343, 2021.

Environment

  • Python : 3.6
  • Ubuntu : 18.04
  • CUDA : 11.1
  • cudnn : 8.0.5
  • torch : 1.7.1
  • torchvision : 0.8.2
  • GPU : one Nvidia RTX3090

Installation

  • First, you need to install python and other packages.

    pip install -r requirements.txt
  • Then, you need to install torch and torchvision. We tested our code on torch1.7.1 and torchvision0.8.2. But our code can also work with torch version >= 1.5.0.

Quick Demo

  • Download pretrained GMR model from [pretrained GMR] and make them look like this:

    ${GMR_ROOT}
     |-- results
         |-- GMR
             |-- final_model.pth
    
  • Download other model files from [other model files] and make them look like this:

    ${GMR_ROOT}
     |-- data
         |-- gmr_data
             |-- J_regressor_extra.npy
             |-- J_regressor_h36m.npy
             |-- SMPL_NEUTRAL.pkl
             |-- gmm_08.pkl
             |-- smpl_mean_params.npz
             |-- spin_model_checkpoint.pth.tar
             |-- vibe_model_w_3dpw.pth.tar
             |-- vibe_model_wo_3dpw.pth.tar
    
  • Finally, download demo videos from [demo videos] and make them look like this:

    ${GMR_ROOT}
    |-- configs
    |-- data
    |-- lib
    |-- results
    |-- scripts
    |-- demo.py
    |-- eval_3dpw.py
    |-- eval_synthetic.py
    |-- DEMO_VIDEO1.mp4
    |-- DEMO_VIDEO2.mp4
    |-- DEMO_VIDEO3.mp4
    |-- DEMO_VIDEO4.mp4
    |-- README.md
    |-- requirements.txt
    |-- run_eval_3dpw.sh
    |-- run_eval_synthetic.sh
    |-- run_train.sh
    |-- train.py
    

Demo code consists of (bounding box tracking) - (VIBE) - (GMR)

python demo.py --vid_file DEMO_VIDEO1.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO2.mp4 --vid_type mp4 --vid_fps 30 --view_type front_large --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO3.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO4.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

Data

You need to follow directory structure of the data as below.

${GMR_ROOT}
  |-- data
    |-- amass
      |-- ACCAD
      |-- BioMotionLab_NTroje
      |-- CMU
      |-- EKUT
      |-- Eyes_Japan_Dataset
      |-- HumanEva
      |-- KIT
      |-- MPI_HDM05
      |-- MPI_Limits
      |-- MPI_mosh
      |-- SFU
      |-- SSM_synced
      |-- TCD_handMocap
      |-- TotalCapture
      |-- Transitions_mocap
    |-- gmr_data
      |-- J_regressor_extra.npy
      |-- J_regressor_h36m.npy
      |-- SMPL_NEUTRAL.pkl
      |-- gmm_08.pkl
      |-- smpl_mean_params.npz
      |-- spin_model_checkpoint.pth.tar
      |-- vibe_model_w_3dpw.pth.tar
      |-- vibe_model_wo_3dpw.pth.tar
    |-- gmr_db
      |-- amass_train_db.pt
      |-- h36m_dsd_val_db.pt
      |-- 3dpw_test_db.pt
      |-- synthetic_camera_motion_off.pt
      |-- synthetic_camera_motion_on.pt
  • Download AMASS dataset from this link and place them in data/amass. Then, you can obtain the training data through the following command. Also, you can download the training data from this link.
    source scripts/prepare_training_data.sh
    
  • Download processed 3DPW data [data]
  • Download processed Human3.6 data [data]
  • Download synthetic dataset [data]

Train

Run the commands below to start training:

./run_train.sh

Evaluation

Run the commands below to start evaluation:

# Evaluation on 3DPW dataset
./run_eval_3dpw.sh

# Evaluation on synthetic dataset
./run_eval_synthetic.sh

References

We borrowed some scripts and models externally. Thanks to the authors for providing great resources.

  • Pretrained VIBE and most of functions are borrowed from VIBE.
  • Pretrained SPIN is borrowed from SPIN.
  • SMPL model files are borrowed from SPIN and SMPLify.
Owner
Seong Hyun Kim
M.S. student in CVLAB, Kwang Woon University
Seong Hyun Kim
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022