ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

Overview

ClevrTex

This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

Requirements

The follwing preparation steps are required to generate the dataset.

  1. Setting up blender
  2. Setting up python
  3. Setting up textures and materials

Blender

We used blender 2.92.3 for rendering. Newer versions are untested but should work at least up to a minor bump. One might download it from Blender website and follow installation instructions process as normal then skip to the final step. Or simply execute this (will set up blender in /usr/local/blender):

mkdir /usr/local/blender && \
curl -SL "http://mirror.cs.umn.edu/blender.org/release/Blender2.92/blender-2.92.0-linux64.tar.xz" -o blender.tar.xz && \
tar -xvf blender.tar.xz -C /usr/local/blender --strip-components=1 && \
rm blender.tar.xz && ln -s /usr/local/blender/blender /usr/local/bin/blender

Since we use "system interpreter" (see intructions bellow to set up a compatible one) for Blender headless mode, remove python that comes pre-packaged.

rm -rf /usr/local/blender/2.92/python

Python

One needs to set up python with required libraries and with correct version. Blender uses python 3.7 (older or newer version will not work). For simplicty, use conda:

conda env create -f env.yaml

When invoking Blender use (assumes the appropriate env was named p37) :

PYTHONPATH=~/miniconda3/envs/p37/bin/python \
PYTHONHOME=~/miniconda3/envs/p37 \
blender --background --python-use-system-env --python generate.py -- <args>

Textures

The final piece is to set up source assets for rendering, namely the materials. Briefly, the textures used to create the materials are copyrighted by Poliigon Pty Ltd. Textures used in the ClevrTex dataset are freely availble (at the time of writing) and should be downloaded from www.poliigon.com (download metalness workflow for matalics). Please check MATERIALS.md for full list.

Download appropriate textures and place them into data/materials/textures and data/outd_materials/textures. Note, the textures should be in the directory not in subfolders. We include .blend files for materials which have been stripped of the original textures (due to licensing restrictions) but contain the settings adjustments made. Skip the following instructions if working with existing .blend files.

To add new materials:

The following process needs to be applied for each new material. Consider using addon provided by Poliigon.

  1. Import materials textures as per addon's instructions.
  2. Open the material in question in node editor in Blender.
  3. Create a new node group of all nodes except the output node (yes this will nest the groups, it is intentional). We rely on the trick identified by Johnson et al. in the original CLEVR script where Blender seems to copy-by-value node trees, which makes it trivial to create duplicate materials in the scene.
  4. Connect any inputs of interest to the group inputs. Crucially, check that Scale and Displacement Strength are available as inputs. The sampling script will pass these in to ensure that background/objects have correct scale adjustements to ensure level of details does not disappear between small objects and large background. Check that outputs have been connected to Shader output nodes (should have happended automatically).
  5. Ensure that the materials look good with other parameters. Consider including additional logic nodes to e.g. scaling, and displacement parameters. Materials have Random \in [0, 1] number passed to them as input (if available), if one needs to randomise aspects of the material.
    • (Optional) Render the materials to see how they would look in the output. Repeat until desired look is acheived.
  6. Ensure the node group is named identically to the material and then save it as your-node-group-name.blend.

This is unfortunatelly a manual process to ensure all textures look good that usually involves several test render per texture.

Debugging textures

To ensure the textures are found and look good, consider trying with a single texture first (to save time). To scan for errors and see how the end result might look like, consider using --test_scan option in the generation script.* In addition, consider --blendfiles option to save blender scene after rendering for manual inspection.

Generating

To generate the dataset run the following (will produce a LOCAL_debug_000001.png example):

cd clevrtex-gen
 ./local_test.bash

Otherwise, please see arguments available to customise the rendering. Dataset variants can be recreated using appropriate .json files.

Using ClevrTex

See project page for download links for CLEVRTEX. clevrtex_eval.py file contains dataloading logic to for convenient access to CLEVRTEX data. Consider

from clevrtex_eval import CLEVRTEX, collate_fn

clevrtex = CLEVRTEX(
    'path-to-downloaded-data', # Untar'ed
    dataset_variant='full', # 'full' for main CLEVRTEX, 'outd' for OOD, 'pbg','vbg','grassbg','camo' for variants.
    split='train',
    crop=True,
    resize=(128, 128),
    return_metadata=True # Useful only for evaluation, wastes time on I/O otherwise 
)
# Use collate_fn to handle metadata batching
dataloader = torch.utils.data.DataLoader(clevrtex, batch_size=BATCH, shuffle=True, collate_fn=collate_fn)

Evaluation

See CLEVRTEX_Evaluator in clevrtex_eval.py. It implements all the utilities needed.

CLEVR

This dataset builds upon CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Fei-Fei Li, Larry Zitnick, Ross Girshick
presented at CVPR 2017, code available at https://github.com/facebookresearch/clevr-dataset-gen

In particular we use a method for computing cardinal directions from CLEVR. See the original licence included in the clevr_qa.py file.

BibTeX

If you use ClevrTex dataset or generation code consider citing:

BiBTeX coming soon...
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
Advanced yabai wooting scripts

Yabai Wooting scripts Installation requirements Both https://github.com/xiamaz/python-yabai-client and https://github.com/xiamaz/python-wooting-rgb ne

Max Zhao 3 Dec 31, 2021
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023