End-To-End Crowdsourcing

Overview

End-To-End Crowdsourcing

Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment analysis. LTNet is adapted from "Facial Expression Recognition with Inconsistently Annotated Datasets" to text data. It encompasses a simple attention based neural network and utilizes confusion matrices as a noise reduction technique. For comparison, the traditional ground truth estimators "Fast-Dawid-Skene" and "MACE" are applied.

This codebase was used in both "End-to-End Annotator Bias Approximation on Crowdsourced Single-Label Sentiment Analysis" and "Deep End-to-End Learning for Noisy Annotations and Crowdsourcing in Natural Language Processing".

Training

This is an example training procedure for the TripAdvisor dataset. The dataset and solver objects are initialized before a standard LTNet model is trained for 300 epochs.

import torch
import pytz
import datetime

from datasets.tripadvisor import TripAdvisorDataset
from solver import Solver
from utils import *

# gpu
DEVICE = torch.device('cuda')

# cpu
# DEVICE = torch.device('cpu')

label_dim = 2
annotator_dim = 2
loss = 'nll'
one_dataset_one_annotator = False
dataset = TripAdvisorDataset(device=DEVICE, one_dataset_one_annotator=one_dataset_one_annotator)

lr = 1e-5
batch_size = 64
current_time = datetime.datetime.now(pytz.timezone('Europe/Berlin')).strftime("%Y%m%d-%H%M%S")
hyperparams = {'batch': batch_size, 'lr': lr}
writer = get_writer(path=f'../logs/test',
                    current_time=current_time, params=hyperparams)

solver = Solver(dataset, lr, batch_size, 
                writer=writer,
                device=DEVICE,
                label_dim=label_dim,
                annotator_dim=annotator_dim)

model, f1 = solver.fit(epochs=300, return_f1=True,
                       deep_randomization=True)

These initialization and training steps of a network are abstracted away into src/training. Scripts with many more details on training procedures and different configurations can be found in src/scripts. All are best loaded into an ipython terminal with the %load command.

Databases

How to use them from outside the src folder?

It makes us able to refer to the classes properly.

import sys
sys.path.append("src/")

Pass the root folders of the embeddings and the data.

from datasets.emotion import EmotionDataset

dataset = EmotionDataset(
        text_processor='word2vec', 
        text_processor_filters=['lowercase', 'stopwordsfilter'],
        embedding_path='data/embeddings/word2vec/glove.6B.50d.txt',
        data_path='data/'
        )

Datasets are available at "TripAdvisor", "Emotion" and "Organic".

TripAdvisor Dataset

code

from datasets.tripadvisor import TripAdvisorDataset

dataset = TripAdvisorDataset(text_processor='word2vec', text_processor_filters=['lowercase', 'stopwordsfilter'])

print(f'Dataset is in {dataset.mode} mode')
print(f'Train-Validation split is {dataset.train_val_split}')
print(f'1st train datapoint: {dataset[0]}')

output

Dataset is in train mode
Train-Validation split is 0.8
1st train datapoint: {'label': 0, 'annotator':'f', 'rating': 4, 'text': 'I realise ...', 'embedding': array}

Emotion Dataset

Every headline has been annotated on each emotion. One can select one emotion as the label by the set_emotion method.

code

from datasets.emotion import EmotionDataset

dataset = TripAdvisorDataset(text_processor='word2vec', text_processor_filters=['lowercase', 'stopwordsfilter'])

print(f'Dataset is in {dataset.mode} mode')
print(f'Train-Validation split is {dataset.train_val_split}')
dataset.set_emotion('anger')
print(f'1st train datapoint: {dataset[0]}') # select anger_label as label
dataset.set_emotion('disgust')
print(f'1st train datapoint: {dataset[0]}') # select disgust_label as label

output

Dataset is in train mode
Train-Validation split is 0.8
1st train datapoint: {'label': 0, 'annotator':'xxx1', 'anger_response':0, 'anger_label':0, 'anger_gold'=1, 'disgust_response':0 ... 'text': 'I realise ...', ... 'embedding': array}
1st train datapoint: {'label': 1, 'annotator':'xxx1', 'anger_response':0, 'anger_label':0, 'anger_gold'=1, 'disgust_response':0 ... 'text': 'I realise ...', ... 'embedding': array}
Owner
Andreas Koch
Robotics Graduate @ TU Munich
Andreas Koch
MADT: Offline Pre-trained Multi-Agent Decision Transformer

MADT: Offline Pre-trained Multi-Agent Decision Transformer A link to our paper can be found on Arxiv. Overview Official codebase for Offline Pre-train

Linghui Meng 51 Dec 21, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Ă–zdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023