MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

Related tags

Deep LearningMVS2D
Overview

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

Project Page | Paper


drawing

If you find our work useful for your research, please consider citing our paper:

@article{DBLP:journals/corr/abs-2104-13325,
  author    = {Zhenpei Yang and
               Zhile Ren and
               Qi Shan and
               Qixing Huang},
  title     = {{MVS2D:} Efficient Multi-view Stereo via Attention-Driven 2D Convolutions},
  journal   = {CoRR},
  volume    = {abs/2104.13325},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.13325},
  eprinttype = {arXiv},
  eprint    = {2104.13325},
  timestamp = {Tue, 04 May 2021 15:12:43 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-13325.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

✏️ Changelog

Nov 27 2021

  • Initial release. Note that our released code achieve improved results than those reported in the initial arxiv pre-print. In addition, we include the evaluation on DTU dataset. We will update our paper soon.

⚙️ Installation

Click to expand

The code is tested with CUDA10.1. Please use following commands to install dependencies:

conda create --name mvs2d python=3.7
conda activate mvs2d

pip install -r requirements.txt

The folder structure should looks like the following if you have downloaded all data and pretrained models. Download links are inside each dataset tab at the end of this README.

.
├── configs
├── datasets
├── demo
├── networks
├── scripts
├── pretrained_model
│   ├── demon
│   ├── dtu
│   └── scannet
├── data
│   ├── DeMoN
│   ├── DTU_hr
│   ├── SampleSet
│   ├── ScanNet
│   └── ScanNet_3_frame_jitter_pose.npy
├── splits
│   ├── DeMoN_samples_test_2_frame.npy
│   ├── DeMoN_samples_train_2_frame.npy
│   ├── ScanNet_3_frame_test.npy
│   ├── ScanNet_3_frame_train.npy
│   └── ScanNet_3_frame_val.npy

🎬 Demo

Click to expand

After downloading the pretrained models for ScanNet, try to run following command to make a prediction on a sample data.

python demo.py --cfg configs/scannet/release.conf

The results are saved as demo.png

Training & Testing

We use 4 Nvidia V100 GPU for training. You may need to modify 'CUDA_VISIBLE_DEVICES' and batch size to accomodate your GPU resources.

ScanNet

Click to expand

Download

data 🔗 split 🔗 pretrained models 🔗 noisy pose 🔗

Training

First download and extract ScanNet training data and split. Then run following command to train our model.

bash scripts/scannet/train.sh

To train the multi-scale attention model, add --robust 1 to the training command in scripts/scannet/train.sh.

To train our model with noisy input pose, add --perturb_pose 1 to the training command in scripts/scannet/train.sh.

Testing

First download and extract data, split and pretrained models.

Then run:

bash scripts/scannet/test.sh

You should get something like these:

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.059 0.016 0.026 0.157 0.084 0.964 0.995 0.999 0.108 0.079 0.856 0.974 0.996

SUN3D/RGBD/Scenes11

Click to expand

Download

data 🔗 split 🔗 pretrained models 🔗

Training

First download and extract DeMoN training data and split. Then run following command to train our model.

bash scripts/demon/train.sh

Testing

First download and extract data, split and pretrained models.

Then run:

bash scripts/demon/test.sh

You should get something like these:

dataset rgbd: 160

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.082 0.165 0.047 0.440 0.147 0.921 0.939 0.948 0.325 0.284 0.753 0.894 0.933

dataset scenes11: 256

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.046 0.080 0.018 0.439 0.107 0.976 0.989 0.993 0.155 0.058 0.822 0.945 0.979

dataset sun3d: 160

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.099 0.055 0.044 0.304 0.137 0.893 0.970 0.993 0.224 0.171 0.649 0.890 0.969

-> Done!

depth

abs_rel sq_rel log10 rmse rmse_log a1 a2 a3 abs_diff abs_diff_median thre1 thre3 thre5
0.071 0.096 0.033 0.402 0.127 0.938 0.970 0.981 0.222 0.152 0.755 0.915 0.963

DTU

Click to expand

Download

data 🔗 eval data 🔗 pretrained models 🔗

Training

First download and extract DTU training data. Then run following command to train our model.

bash scripts/dtu/test.sh

Testing

First download and extract DTU eval data and pretrained models.

The following command performs three steps together: 1. Generate depth prediction on DTU test set. 2. Fuse depth predictions into final point cloud. 3. Evaluate predicted point cloud. Note that we re-implement the original Matlab Evaluation of DTU dataset using python.

bash scripts/dtu/test.sh

You should get something like these:

Acc 0.4051747996189477
Comp 0.2776021161518006
F-score 0.34138845788537414

Acknowledgement

The fusion code for DTU dataset is heavily built upon from PatchMatchNet

Owner
CS PhD student
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023