Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Overview

Geometry-aware Instance-reweighted Adversarial Training

This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (https://openreview.net/forum?id=iAX0l6Cz8ub) (ICLR oral)
Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama and Mohan Kankanhalli

What is the nature of adversarial training?

Adversarial training employs adversarial data for updating the models. For more details of the nature of adversarial training, refer to this FAT's GitHub for the preliminary.
In this repo, you will know:

FACT 1: Model Capacity is NOT enough for adversarial training.

We plot standard training error (Natural) and adversarial training error (PGD-10) over the training epochs of the standard AT (Madry's) on CIFAR-10 dataset. *Left panel*: AT on different sizes of network (blue lines) and standard training (ST, the red line) on ResNet-18. *Right panel*: AT on ResNet-18 under different perturbation bounds eps_train.

Refer to FAT's GitHub for the standard AT by setting

python FAT.py --epsilon 0.031 --net 'resnet18' --tau 10 --dynamictau False

OR using codes in this repo by setting

python GAIRAT.py --epsilon 0.031 --net 'resnet18' --Lambda 'inf'

to recover the standard AT (Madry's).

The over-parameterized models that fit nataral data entirely in the standard training (ST) are still far from enough for fitting adversarial data in adversarial training (AT). Compared with ST fitting the natural data points, AT smooths the neighborhoods of natural data, so that adversarial data consume significantly more model capacity than natural data.

The volume of this neighborhood is exponentially large w.r.t. the input dimension , even if is small.

Under the computational budget of 100 epochs, the networks hardly reach zero error on the adversarial training data.

FACT 2: Data points are inherently different.

More attackable data are closer to the decision boundary.

More guarded data are farther away from the decision boundary.

More attackable data (lighter red and blue) are closer to the decision boundary; more guarded data (darker red and blue) are farther away from the decision boundary. *Left panel*: Two toy examples. *Right panel*: The model’s output distribution of two randomly selected classes from the CIFAR-10 dataset. The degree of robustness (denoted by the color gradient) of a data point is calculated based on the least number of iterations κ that PGD needs to find its misclassified adversarial variant.

Therefore, given the limited model capacity, we should treat data differently for updating the model in adversarial training.

IDEA: Geometrically speaking, a natural data point closer to/farther from the class boundary is less/more robust, and the corresponding adversarial data point should be assigned with larger/smaller weight for updating the model.
To implement the idea, we propose geometry-aware instance-reweighted adversarial training (GAIRAT), where the weights are based on how difficult it is to attack a natural data point.
"how difficult it is to attack a natural data point" is approximated by the number of PGD steps that the PGD method requires to generate its misclassified adversarial variant.

The illustration of GAIRAT. GAIRAT explicitly gives larger weights on the losses of adversarial data (larger red), whose natural counterparts are closer to the decision boundary (lighter blue). GAIRAT explicitly gives smaller weights on the losses of adversarial data (smaller red), whose natural counterparts are farther away from the decision boundary (darker blue).

GAIRAT's Implementation

For updating the model, GAIRAT assigns instance dependent weight (reweight) on the loss of the adversarial data (found in GAIR.py).
The instance dependent weight depends on num_steps, which indicates the least PGD step numbers needed for the misclassified adversarial variant.

Preferred Prerequisites

  • Python (3.6)
  • Pytorch (1.2.0)
  • CUDA
  • numpy
  • foolbox

Running GAIRAT, GAIR-FAT on benchmark datasets (CIFAR-10 and SVHN)

Here are examples:

  • Train GAIRAT and GAIR-FAT on WRN-32-10 model on CIFAR-10 and compare our results with AT, FAT
CUDA_VISIBLE_DEVICES='0' python GAIRAT.py 
CUDA_VISIBLE_DEVICES='0' python GAIR_FAT.py 
  • How to recover the original FAT and AT using our code?
CUDA_VISIBLE_DEVICES='0' python GAIRAT.py --Lambda 'inf' --output_dir './AT_results' 
CUDA_VISIBLE_DEVICES='0' python GAIR_FAT.py --Lambda 'inf' --output_dir './FAT_results' 
  • Evaluations After running, you can find ./GAIRAT_result/log_results.txt and ./GAIR_FAT_result/log_results.txt for checking Natural Acc. and PGD-20 test Acc.
    We also evaluate our models using PGD+. PGD+ is the same as PG_ours in RST repo. PG_ours is PGD with 5 random starts, and each start has 40 steps with step size 0.01 (It has 40 × 5 = 200 iterations for each test data). Since PGD+ is computational defense, we only evaluate the best checkpoint bestpoint.pth.tar and the last checkpoint checkpoint.pth.tar in the folders GAIRAT_result and GAIR_FAT_result respectively.
CUDA_VISIBLE_DEVICES='0' python eval_PGD_plus.py --model_path './GAIRAT_result/bestpoint.pth.tar' --output_suffix='./GAIRAT_PGD_plus'
CUDA_VISIBLE_DEVICES='0' python eval_PGD_plus.py --model_path './GAIR_FAT_result/bestpoint.pth.tar' --output_suffix='./GAIR_FAT_PGD_plus'

White-box evaluations on WRN-32-10

Defense (best checkpoint) Natural Acc. PGD-20 Acc. PGD+ Acc.
AT(Madry) 86.92 % 0.24% 51.96% 0.21% 51.28% 0.23%
FAT 89.16% 0.15% 51.24% 0.14% 46.14% 0.19%
GAIRAT 85.75% 0.23% 57.81% 0.54% 55.61% 0.61%
GAIR-FAT 88.59% 0.12% 56.21% 0.52% 53.50% 0.60%
Defense (last checkpoint) Natural Acc. PGD-20 Acc. PGD+ Acc.
AT(Madry) 86.62 % 0.22% 46.73% 0.08% 46.08% 0.07%
FAT 88.18% 0.19% 46.79% 0.34% 45.80% 0.16%
GAIRAT 85.49% 0.25% 53.76% 0.49% 50.32% 0.48%
GAIR-FAT 88.44% 0.10% 50.64% 0.56% 47.51% 0.51%

For more details, refer to Table 1 and Appendix C.8 in the paper.

Benchmarking robustness with additional 500K unlabeled data on CIFAR-10 dataset.

In this repo, we unleash the full power of our geometry-aware instance-reweighted methods by incorporating 500K unlabeled data (i.e., GAIR-RST). In terms of both evaluation metrics, i.e., generalization and robustness, we can obtain the best WRN-28-10 model among all public available robust models.

  • How to create the such the superior model from scratch?
  1. Download ti_500K_pseudo_labeled.pickle containing our 500K pseudo-labeled TinyImages from this link (Auxillary data provided by Carmon et al. 2019). Store ti_500K_pseudo_labeled.pickle into the folder ./data
  2. You may need mutilple GPUs for running this.
chmod +x ./GAIR_RST/run_training.sh
./GAIR_RST/run_training.sh
  1. We evaluate the robust model using natural test accuracy on natural test data and roubust test accuracy by Auto Attack. Auto Attack is combination of two white box attacks and two black box attacks.
chmod +x ./GAIR_RST/autoattack/examples/run_eval.sh

White-box evaluations on WRN-28-10

We evaluate the robustness on CIFAR-10 dataset under auto-attack (Croce & Hein, 2020).

Here we list the results using WRN-28-10 on the leadboard and our results. In particular, we use the test eps = 0.031 which keeps the same as the training eps of our GAIR-RST.

CIFAR-10 - Linf

The robust accuracy is evaluated at eps = 8/255, except for those marked with * for which eps = 0.031, where eps is the maximal Linf-norm allowed for the adversarial perturbations. The eps used is the same set in the original papers.
Note: ‡ indicates models which exploit additional data for training (e.g. unlabeled data, pre-training).

# method/paper model architecture clean report. AA
1 (Gowal et al., 2020) authors WRN-28-10 89.48 62.76 62.80
2 (Wu et al., 2020b) available WRN-28-10 88.25 60.04 60.04
- GAIR-RST (Ours)* available WRN-28-10 89.36 59.64 59.64
3 (Carmon et al., 2019) available WRN-28-10 89.69 62.5 59.53
4 (Sehwag et al., 2020) available WRN-28-10 88.98 - 57.14
5 (Wang et al., 2020) available WRN-28-10 87.50 65.04 56.29
6 (Hendrycks et al., 2019) available WRN-28-10 87.11 57.4 54.92
7 (Moosavi-Dezfooli et al., 2019) authors WRN-28-10 83.11 41.4 38.50
8 (Zhang & Wang, 2019) available WRN-28-10 89.98 60.6 36.64
9 (Zhang & Xu, 2020) available WRN-28-10 90.25 68.7 36.45

The results show our GAIR-RST method can facilitate a competitive model by utilizing additional unlabeled data.

Wanna download our superior model for other purposes? Sure!

We welcome various attack methods to attack our defense models. For cifar-10 dataset, we normalize all images into [0,1].

Download our pretrained models checkpoint-epoch200.pt into the folder ./GAIR_RST/GAIR_RST_results through this Google Drive link.

You can evaluate this pretrained model through ./GAIR_RST/autoattack/examples/run_eval.sh

Reference

@inproceedings{
zhang2021_GAIRAT,
title={Geometry-aware Instance-reweighted Adversarial Training},
author={Jingfeng Zhang and Jianing Zhu and Gang Niu and Bo Han and Masashi Sugiyama and Mohan Kankanhalli},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=iAX0l6Cz8ub}
}

Contact

Please contact [email protected] or [email protected] and [email protected] if you have any question on the codes.

Owner
Jingfeng
Jingfeng Zhang, Postdoc (2021 - ) at RIKEN-AIP, Tokyo; Ph.D. (2016- 2020) from the School of Computing at the National University of Singapore.
Jingfeng
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

0 May 06, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022