A rule learning algorithm for the deduction of syndrome definitions from time series data.

Overview

README

This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm are based on "BOOMER".

Features

The algorithm that is provided by this project currently supports the following functionalities for learning descriptive rules:

  • The quality of rules is assessed by comparing the predictions of the current model to the ground truth in terms of the Pearson correlation coefficient.
  • When learning a new rule, random samples of the features may be used.
  • Hyper-parameters that provide control over the specificity/generality of rules are available.
  • The algorithm can natively handle numerical, ordinal and nominal features (without the need for pre-processing techniques such as one-hot encoding).
  • The algorithm is able to deal with missing feature values, i.e., occurrences of NaN in the feature matrix.

In addition, the following features that may speed up training or reduce the memory footprint are currently implemented:

  • Dense or sparse feature matrices can be used for training. The use of sparse matrices may speed-up training significantly on some data sets.
  • Multi-threading can be used to parallelize the evaluation of a rule's potential refinements across multiple CPU cores.

Project structure

|-- cpp                     Contains the implementation of core algorithms in C++
    |-- subprojects
        |-- common          Contains implementations that all algorithms have in common
        |-- tsa             Contains implementations for time series analysis
    |-- ...
|-- python                  Contains Python code for running experiments
    |-- rl
        |-- common          Contains Python code that is needed to run any kind of algorithms
            |-- cython      Contains commonly used Cython wrappers
            |-- ...
        |-- tsa             Contains Python code for time series analysis
            |-- cython      Contains time series-specific Cython wrappers
            |-- ...
        |-- testbed         Contains useful functionality for running experiments
            |-- ...
    |-- main.py             Can be used to start an experiment
    |-- ...
|-- Makefile                Makefile for compilation
|-- ...

Project setup

The algorithm provided by this project is implemented in C++. In addition, a Python wrapper that implements the scikit-learn API is available. To be able to integrate the underlying C++ implementation with Python, Cython is used.

The C++ implementation, as well as the Cython wrappers, must be compiled in order to be able to run the provided algorithm. To facilitate compilation, this project comes with a Makefile that automatically executes the necessary steps.

At first, a virtual Python environment can be created via the following command:

make venv

As a prerequisite, Python 3.7 (or a more recent version) must be available on the host system. All compile-time dependencies (numpy, scipy, Cython, meson and ninja) that are required for building the project will automatically be installed into the virtual environment. As a result of executing the above command, a subdirectory venv should have been created within the project's root directory.

Afterwards, the compilation can be started by executing the following command:

make compile

Finally, the library must be installed into the virtual environment, together with all of its runtime dependencies (e.g. scikit-learn, a full list can be found in setup.py). For this purpose, the project's Makefile provides the following command:

make install

Whenever any C++ or Cython source files have been modified, they must be recompiled by running the command make compile again! If compilation files do already exist, only the modified files will be recompiled.

Cleanup: To get rid of any compilation files, as well as of the virtual environment, the following command can be used:

make clean

For more fine-grained control, the command make clean_venv (for deleting the virtual environment) or make clean_compile (for deleting the compiled files) can be used. If only the compiled Cython files should be removed, the command make clean_cython can be used. Accordingly, the command make clean_cpp removes the compiled C++ files.

Parameters

The file python/main.py allows to run experiments on a specific data set using different configurations of the learning algorithm. The implementation takes care of writing the experimental results into .csv files and the learned model can (optionally) be stored on disk to reuse it later.

In order to run an experiment, the following command line arguments must be provided (most of them are optional):

Parameter Optional? Default Description
--data-dir No None The path of the directory where the data sets are located.
--temp-dir No None The path of the directory where temporary files should be saved.
--dataset No None The name of the .csv files that store the raw data (without suffix).
--feature-definition No None The name of the .txt file that specifies the names of the features to be used (without suffix).
--from-year No None The first year (inclusive) that should be taken into account.
--to-year No None The last year (inclusive) that should be taken into account.
--from-week Yes -1 The first week (inclusive) of the first year that should be taken into account or -1, if all weeks of that year should be used.
--to-week Yes -1 The last week (inclusive) of the last year that should be taken into account or -1, if all weeks of that year should be used.
--count-file-name Yes None The name of the file that stores the number of cases that correspond to individual weeks (without suffix). If not specified, the results from appending "_counts" to the dataset name.
--one-hot-encoding Yes False True, if one-hot-encoding should be used for nominal attributes, False otherwise.
--output-dir Yes None The path of the directory into which the experimental results (.csv files) should be written.
--print-rules Yes True True, if the induced rules should be printed on the console, False otherwise.
--store-rules Yes True True, if the induced rules should be stored as a .txt file, False otherwise. Does only have an effect if the parameter --output-dir is specified.
--print-options Yes {} A dictionary that specifies additional options to be used for printing or storing rules, if the parameter --print-rules and/or --store-rules is set to True, e.g. {'print_feature_names':True,'print_label_names':True,'print_nominal_values':True}.
--store-predictions Yes True True, if the predictions for the training data should be stored as a .csv file, False otherwise. Does only have an effect if the parameter --output-dir is specified.
--model-dir Yes None The path of the directory where models (.model files) are located.
--max-rules Yes 50 The maximum number of rules to be induced or -1, if the number of rules should not be restricted.
--time-limit Yes -1 The duration in seconds after which the induction of rules should be canceled or -1, if no time limit should be used.
--feature-sub-sampling Yes None The name of the strategy to be used for feature sub-sampling. Must be random-feature-selection or None. Additional arguments may be provided as a dictionary, e.g. random_feature-selection{'sample_size':0.5}.
--min-support Yes 0.0001 The percentage of training examples that must be covered by a rule. Must be greater than 0 and smaller than 1.
--max-conditions Yes -1 The maximum number of conditions to be included in a rule's body. Must be at least 1 or -1, if the number of conditions should not be restricted.
--random-state Yes 1 The seed to the be used by random number generators.
--feature-format Yes auto The format to be used for the feature matrix. Must be sparse, if a sparse matrix should be used, dense, if a dense matrix should be used, or auto, if the format should be chosen automatically.
--num-threads-refinement Yes 1 The number of threads to be used to search for potential refinements of rules. Must be at least 1 or -1, if the number of cores that are available on the machine should be used.
--log-level Yes info The log level to be used. Must be debug, info, warn, warning, error, critical, fatal or notset.

Example and data format

In the following, we give a more detailed description of the data that must be provided to the algorithm. All input files must use UTF-8 encoding and they must be available in a single directory. The path of the directory must be specified via the parameter --data-dir. The following files must be included in the directory:

  • A .csv file that stores the raw training data (see data/example.csv for an example). Each row (separated by line breaks) must correspond to an individual instance and the columns (separated by commas) must correspond to the available features. The names of the columns/features must be given as the first row. The names of columns can be arbitrary, but there must be a column named "week" that associates each instance with a corresponding year and week (using the format year-month, e.g. 2019-2).
  • A .csv file that specifies the number of cases that correspond to individual weeks (see data/example_counts.csv for an example). The file must consist of three columns, year,week,cases, separated by commas. The names of columns must be given as the first row. Each of the other rows (separated by line breaks) assigns a specific number of cases to a certain week of a year (all values must be positive integers). For each combination of year and week that occurs in the column "week" of the first .csv file, the number of cases must be specified in this second .csv file.
  • A .txt file that specifies the names of the features that should be taken into account (see data/features.txt for an example). Each feature name must be given as a new line. For each feature that is specified in the text file, a column with the same name must exist in the first .csv file.

The parameter --dataset is used to identify the .csv files that should be used by the algorithm. Its value must correspond to the name of the first .csv file mentioned above, omitting the file's suffix (e.g. example if the file's name is example.csv). The second .csv file must be named accordingly by appending the suffix _counts to the name of the first file (e.g. example_counts.csv). The parameter --feature-definition is used to specify the name of the text file that stores the names of relevant features. The given value must correspond to the name of the text file, again omitting the file's suffix (e.g. features, if the file's name is features.txt).

In the following, the command for running an experiment, including all mandatory parameters, can be seen:

venv/bin/python3 python/main.py --data-dir /path/to/data/ --temp-dir /path/to/temp/ --dataset example --feature-definition features --from-year 2018 --to-year 2019

When running the program for the first time, the .csv files that are located in the specified data directory will be loaded. The data will be filtered according to the parameters --from-year and --to-year, such that only instances that belong to the specified timespan are retained. Furthermore, all columns that are missing from the supplied text file will be removed. Finally, the data is converted into the format that is required for learning a rule model. This results in two files (an .arff file and a .xml file) that are written to the directory that is specified via the parameter --temp-dir. The resulting files are named according to the following scheme: <dataset>_<feature-definition>_<from-year>-<to-year> (e.g., example_features_2018-2019.) When running the program multiple times, it will check if the files do already exist. If this is the case, the preprocessing step will be skipped and the available files will be used as they are.

You might also like...
Rule-based Customer Segmentation
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

Continuous Security Group Rule Change Detection & Response at scale
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

A real world application of a Recurrent Neural Network on a binary classification of time series data
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

Releases(0.1.0)
  • 0.1.0(Sep 24, 2021)

    The first release of the algorithm. It supports the following functionalities for learning descriptive rules:

    • The quality of rules is assessed by comparing the predictions of the current model to the ground truth in terms of the Pearson correlation coefficient.
    • When learning a new rule, random samples of the features may be used.
    • Hyper-parameters that provide control over the specificity/generality of rules are available.
    • The algorithm can natively handle numerical, ordinal and nominal features (without the need for pre-processing techniques such as one-hot encoding).
    • The algorithm is able to deal with missing feature values, i.e., occurrences of NaN in the feature matrix.
    Source code(tar.gz)
    Source code(zip)
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022