exponential adaptive pooling for PyTorch

Related tags

Deep LearningadaPool
Overview

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling

supported versions Library GitHub license


Abstract

Pooling layers are essential building blocks of Convolutional Neural Networks (CNNs) that reduce computational overhead and increase the receptive fields of proceeding convolutional operations. They aim to produce downsampled volumes that closely resemble the input volume while, ideally, also being computationally and memory efficient. It is a challenge to meet both requirements jointly. To this end, we propose an adaptive and exponentially weighted pooling method named adaPool. Our proposed method uses a parameterized fusion of two sets of pooling kernels that are based on the exponent of the Dice-Sørensen coefficient and the exponential maximum, respectively. A key property of adaPool is its bidirectional nature. In contrast to common pooling methods, weights can be used to upsample a downsampled activation map. We term this method adaUnPool. We demonstrate how adaPool improves the preservation of detail through a range of tasks including image and video classification and object detection. We then evaluate adaUnPool on image and video frame super-resolution and frame interpolation tasks. For benchmarking, we introduce Inter4K, a novel high-quality, high frame-rate video dataset. Our combined experiments demonstrate that adaPool systematically achieves better results across tasks and backbone architectures, while introducing a minor additional computational and memory overhead.


[arXiv preprint -- coming soon]

Original
adaPool

Dependencies

All parts of the code assume that torch is of version 1.4 or higher. There might be instability issues on previous versions.

This work relies on the previous repo for exponential maximum pooling (alexandrosstergiou/SoftPool). Before opening an issue please do have a look at that repository as common problems in running or installation have been addressed.

! Disclaimer: This repository is heavily structurally influenced on Ziteng Gao's LIP repo https://github.com/sebgao/LIP

Installation

You can build the repo through the following commands:

$ git clone https://github.com/alexandrosstergiou/adaPool.git
$ cd adaPool-master/pytorch
$ make install
--- (optional) ---
$ make test

Usage

You can load any of the 1D, 2D or 3D variants after the installation with:

# Ensure that you import `torch` first!
import torch
import adapool_cuda

# For function calls
from adaPool import adapool1d, adapool2d, adapool3d, adaunpool
from adaPool import edscwpool1d, edscwpool2d, edscwpool3d
from adaPool import empool1d, empool2d, empool3d
from adaPool import idwpool1d, idwpool2d, idwpool3d

# For class calls
from adaPool import AdaPool1d, AdaPool2d, AdaPool3d
from adaPool import EDSCWPool1d, EDSCWPool2d, EDSCWPool3d
from adaPool import EMPool1d, EMPool2d, EMPool3d
from adaPool import IDWPool1d, IDWPool2d, IDWPool3d
  • (ada/edscw/em/idw)pool<x>d: Are functional interfaces for each of the respective pooling methods.
  • (Ada/Edscw/Em/Idw)Pool<x>d: Are the class version to create objects that can be referenced in the code.

Citation

@article{stergiou2021adapool,
  title={AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling},
  author={Stergiou, Alexandros and Poppe, Ronald},
  journal={arXiv preprint},
  year={2021}}

Licence

MIT

You might also like...
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

[CVPR 2021] Official PyTorch Implementation for
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

Comments
  • Installation issue on Google Colab

    Installation issue on Google Colab

    Hi, Thanks for providing a Cuda optimized implementation. While building the lib I encountered an issue with "inf" at limits.cuh.

    CUDA/limits.cuh(119): error: identifier "inf" is undefined
    
    CUDA/limits.cuh(120): error: identifier "inf" is undefined
    
    CUDA/limits.cuh(128): error: identifier "inf" is undefined
    
    CUDA/limits.cuh(129): error: identifier "inf" is undefined
    
    4 errors detected in the compilation of "CUDA/adapool_cuda_kernel.cu".
    error: command '/usr/local/cuda/bin/nvcc' failed with exit status 1
    Makefile:2: recipe for target 'install' failed
    make: *** [install] Error 1
    

    The following notebook provides more details with environment informations: https://colab.research.google.com/drive/1T6Nxe2qbjKxXzo2IimFMYBn52qbthlZB?usp=sharing

    opened by okbalefthanded 2
  • Solution: Unresolved extern function '_Z3powdi'”

    Solution: Unresolved extern function '_Z3powdi'”

    cuda11. 0

    When I tried to build your project on win10, I encountered the following problems: “ptxas fatal : Unresolved extern function '_Z3powdi'”

    Reason: Wrong use of pow function in Cu code Solution: for example, pow (x, 2) can be changed to X * X

    opened by Culturenotes 1
  • Does AdaPool2d's beta require fixed image size?

    Does AdaPool2d's beta require fixed image size?

    I'm currently running AdaPool2d as a replacement of MaxPool2d in Resnet's stem similar on how you did it in SoftPool. However, I keep on getting an assertionError in line 1325 as shown below:

    assert isinstance(beta, tuple) or torch.is_tensor(beta), 'Agument `beta` can only be initialized with Tuple or Tensor type objects and should correspond to size (oH, oW)'
    

    Does this mean beta requires a fixed image size, e.g. (224,244)? Or is there a way to make it adaptive across varying image size (e.g. object detection)?

    opened by johnanthonyjose 1
  • The version of pytorch and how to deal with `nan_to_num` function in lower versions

    The version of pytorch and how to deal with `nan_to_num` function in lower versions

    Thank you for this amazing project. I saw it from SoftPool. After installing it, make test, but I got AttributeError: module 'torch' has no attribute 'nan_to_num', after I checked, this function used in idea.py was introduced in Pytorch 1.8.0, so the torch version in the README may need to be updated, or is there an easy way to be compatible with lower versions?

    opened by MaxChanger 1
Releases(v0.2)
Owner
Alexandros Stergiou
Computer Vision and Machine Learning Researcher
Alexandros Stergiou
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022