Model Zoo of BDD100K Dataset

Overview

BDD100K Model Zoo

In this repository, we provide popular models for each task in the BDD100K dataset.

teaser

For each task in the BDD100K dataset, we make publicly available the model weights, evaluation results, predictions, visualizations, as well as scripts to performance evaluation and visualization. The goal is to provide a set of competitive baselines to facilitate research and provide a common benchmark for comparison.

The number of pre-trained models in this zoo is 1️⃣ 1️⃣ 5️⃣ . You can include your models in this repo as well! See contribution instructions.

This repository currently supports the tasks listed below. For more information about each task, click on the task name. We plan to support all tasks in the BDD100K dataset eventually; see the roadmap for our plan and progress.

If you have any questions, please go to the BDD100K discussions.

Roadmap

  • Lane marking
  • Panoptic segmentation
  • Pose estimation

Dataset

Please refer to the dataset preparation instructions for how to prepare and use the BDD100K dataset with the models.

Maintainers

Citation

To cite the BDD100K dataset in your paper,

@InProceedings{bdd100k,
    author = {Yu, Fisher and Chen, Haofeng and Wang, Xin and Xian, Wenqi and Chen,
              Yingying and Liu, Fangchen and Madhavan, Vashisht and Darrell, Trevor},
    title = {BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}
Comments
  • Using the models to predict on other Images

    Using the models to predict on other Images

    Hi,

    can i use the models under "bdd100k-models/det/" to make predictions on other images ?

    When i followed the "Usage"-Section, it seems that the models can only be used to evaluate the Test/Val Images.

    opened by askppp 5
  • Drivable Segmentation Model inference stuck

    Drivable Segmentation Model inference stuck

    When I am running Deeplabv3+ model by using: python ./test.py configs/drivable/deeplabv3plus_r50-d8_512x1024_40k_drivable_bdd100k.py --format-only --format-dir output It just stuck in around 1490 step image I have tried several different configs, they all have the same issue.

    opened by danielzhangau 4
  • Generate semantic segmentation output as png

    Generate semantic segmentation output as png

    Hello,

    I'm generating semantic segmentation using the following command.

    python ./test.py ~/config.py --show-dir ~/Documents/bdd100k-models/data/bdd100k/labels/seg_track_20/val --opacity 1
    

    This generates the colormaps for the images, however, the output produced is in .jpg format which results in blur within the labels (as shown below.) How can I update the script so that it generates the labels in png format. My input images are from the MOTS 2020 Images dataset, which are in jpg format.

    image

    opened by digvijayad 2
  • Sem_Seg Inference Error - RuntimeError: DataLoader worker is killed by signal: Segmentation fault.

    Sem_Seg Inference Error - RuntimeError: DataLoader worker is killed by signal: Segmentation fault.

    Error when running Sem_seg model inference Command Run: python ./test.py ./configs/sem_seg/deeplabv3+_r50-d8_512x1024_40k_sem_seg_bdd100k.py --format-only --format-dir ./outputs

    ERROR:

    workers per gpu=2
    /home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/mmseg/models/losses/cross_entropy_loss.py:235: UserWarning: Default ``avg_non_ignore`` is False, if you would like to ignore the certain label and average loss over non-ignore labels, which is the same with PyTorch official cross_entropy, set ``avg_non_ignore=True``.
      warnings.warn(
    load checkpoint from http path: https://dl.cv.ethz.ch/bdd100k/sem_seg/models/deeplabv3+_r50-d8_512x1024_40k_sem_seg_bdd100k.pth
    'CLASSES' not found in meta, use dataset.CLASSES instead
    'PALETTE' not found in meta, use dataset.PALETTE instead
    [                                                  ] 0/1000, elapsed: 0s, ETA:ERROR: Unexpected segmentation fault encountered in worker.
    ERROR: Unexpected segmentation fault encountered in worker.
    ERROR: Unexpected segmentation fault encountered in worker.
    Traceback (most recent call last):
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1011, in _try_get_data
        data = self._data_queue.get(timeout=timeout)
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/queue.py", line 179, in get
        self.not_empty.wait(remaining)
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/threading.py", line 306, in wait
        gotit = waiter.acquire(True, timeout)
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/torch/utils/data/_utils/signal_handling.py", line 66, in handler
        _error_if_any_worker_fails()
    RuntimeError: DataLoader worker (pid 15796) is killed by signal: Segmentation fault. 
    
    The above exception was the direct cause of the following exception:
    
    Traceback (most recent call last):
      File "./test.py", line 174, in <module>
        main()
      File "./test.py", line 150, in main
        outputs = single_gpu_test(
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/mmseg/apis/test.py", line 89, in single_gpu_test
        for batch_indices, data in zip(loader_indices, data_loader):
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 530, in __next__
        data = self._next_data()
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1207, in _next_data
        idx, data = self._get_data()
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1163, in _get_data
        success, data = self._try_get_data()
      File "/home/lunet/codsn/.conda/envs/bdd100k-mmseg/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1024, in _try_get_data
        raise RuntimeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str)) from e
    RuntimeError: DataLoader worker (pid(s) 15796) exited unexpectedly
    
    opened by digvijayad 2
  • red traffic lights

    red traffic lights

    Hello, thanks for your marvelous contribution.I would like to know that the category of red traffic lights is not available on bdd, have you re-labeled it on the bdd dataset?

    opened by liluxing153 1
  • tagging:finetune possibilities

    tagging:finetune possibilities

    hi hi, thanks for your marvelous contribution. I am very impressed. Now I want to apply this pretrain model(tagging road type and weather) on my own dataset, do you have any codebase for finetuning?

    opened by anran1231 1
  • Semantic segmetation ;common settings  MMSegmentation link not working

    Semantic segmetation ;common settings MMSegmentation link not working

    https://github.com/open-mmlab/mmsegmentation/blob/master/docs/model_zoo.md#common-settings The above link is not working

    I would like to know the settings under which the segmentation models are trained , so that i can replicate the results . thank you.

    opened by 100daggers 1
  • Issue in converting the instance segmentation mask encoding from bdd100k to coco

    Issue in converting the instance segmentation mask encoding from bdd100k to coco

    Hello,

    I am trying to convert the bdd100k instance segmentation using this command: python3 -m bdd100k.label.to_coco -m ins_seg --only-mask -i ./bdd100k/labels/ins_seg/bitmasks/val -o ./ins_seg_val_cocofmt_v2.json

    Also, tried this: python3 -m bdd100k.label.to_coco -m ins_seg -i ./bdd100k/labels/ins_seg/polygons/ins_seg_val.json -o ./ins_seg_val_cocofmt_v3.json -mb ./bdd100k/labels/ins_seg/bitmasks/val

    The conversion is successful in both cases and the annotation looks like this

    Screen Shot 2022-01-07 at 11 46 36 AM ** that's not how coco annotations are.

    Now, if you see the segmentation field above there's string encoding of the masks. Now, I am unsure if that's expected or not.

    Further, assuming it's correct, I tried to load the annotations using loader from DETR https://github.com/facebookresearch/detr/blob/091a817eca74b8b97e35e4531c1c39f89fbe38eb/datasets/coco.py#L36

    The line I have mentioned above is supposed to do the conversion but I am getting an error from the pycocotools that it's not expecting a string in the mask. Screen Shot 2022-01-07 at 11 53 51 AM

    So, I am unsure where the problem is? Is the conversion correct to coco then the loader should work? Note: I tried to convert the detections and they worked fine.

    Thank you for any help you can provide.

    opened by sfarkya04 1
  • How to train on my own gpu?

    How to train on my own gpu?

    Hello! thank you for your work~~but i wonder if i could train these models on my own gpu? i wonder if there are som instructions or usages? plz ,thank u!

    opened by StefanYz 1
Releases(v1.1.0)
  • v1.1.0(Dec 2, 2021)

    BDD100K Models 1.1.0 Release

    teaser

    • Highlights
    • New Task: Pose Estimation
    • New Models

    Highlights

    In this release, we provide over 20 pre-trained models for the new pose estimation task in BDD100K, along with evaluation and visualization tools. We also provide over 30 new models for object detection, instance segmentation, semantic segmentation, and drivable area.

    New Task: Pose Estimation

    With the release of 2D human pose estimation data in BDD100K, we provide pre-trained models in this repo.

    • Pose estimation
      • ResNet, MobileNetV2, HRNet, and more.

    New Models

    We provide additional models for previous tasks

    • Object detection
      • Libra R-CNN, HRNet.
    • Instance segmentation
      • GCNet, HRNet.
    • Semantic segmentation / drivable area
      • NLNet, PointRend.
    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Oct 29, 2021)

    BDD100K Models 1.0.0 Release

    teaser

    • Highlights
    • Tasks
    • Models
    • Contribution

    Highlights

    The model zoo for BDD100K, the largest driving video dataset, is open for business! It contains more than 100 pre-trained models for 7 tasks. Each model also comes with results and visualization on val and test sets. We also provide documentation for community contribution so that everyone can include their models in this repo.

    Tasks

    We currently support 7 tasks

    • Image Tagging
    • Object Detection
    • Instance Segmentation
    • Semantic Segmentation
    • Drivable Area
    • Multiple Object Tracking (MOT)
    • Multiple Object Tracking and Segmentation (MOTS)

    Each task includes

    • Official evaluation results, model weights, predictions, and visualizations.
    • Detailed instructions for evaluation and visualization.

    Models

    We include popular network models for each task

    • Image tagging
      • VGG, ResNet, and DLA.
    • Object detection
      • Cascade R-CNN, Sparse R-CNN, Deformable ConvNets v2, and more.
    • Instance segmentation
      • Mask R-CNN, Cascade Mask R-CNN, HRNet, and more.
    • Semantic segmentation / drivable area
      • Deeplabv3+, CCNet, DNLNet, and more.
    • Multiple object tracking (MOT)
      • QDTrack.
    • Multiple object tracking and segmentation (MOTS)
      • PCAN.

    Contribution

    We encourage the BDD100K dataset users to contribute their models to this repo, so that all the info can be used for further result reproduction and analysis. The detailed instruction and model submission template are at the contribution page.

    Source code(tar.gz)
    Source code(zip)
Owner
ETH VIS Group
Visual Intelligence and Systems Group at ETH Zürich
ETH VIS Group
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022