ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

Overview

ByteTrack-ONNX-Sample

ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。
ONNXに変換したモデルも同梱しています。
変換自体を試したい方はByteTrack_Convert2ONNX.ipynbを使用ください。
ByteTrack_Convert2ONNX.ipynbはColaboratory上での実行を想定しています。
書き動画はWindowsでの実行例です。

sample_.mp4

Requirement

opencv-python 4.5.3.56 or later
onnx 1.9.0 or later
onnxruntime-gpu 1.9.0 or later
Cython 0.29.24 or later
torch 1.8.1 or later
torchvision 0.9.1 or later
pycocotools 2.0.2 or later
scipy 1.6.3 or later
loguru 0.5.3 or later
thop 0.0.31.post2005241907 or later
lap 0.4.0 or later
cython_bbox 0.1.3 or later

※onnxruntime-gpuはonnxruntimeでも動作しますが、推論時間がかかるためGPUを推奨します
※Windowsでcython_bbox のインストールが失敗する場合は、GitHubからのインストールをお試しください(2021/11/19時点)
pip install -e git+https://github.com/samson-wang/cython_bbox.git#egg=cython-bbox

Demo

デモの実行方法は以下です。

動画:動画に対しByteTrackで追跡した結果を動画出力します

python demo_video_onnx.py
実行時オプション
  • --use_debug_window
    動画書き込み時に書き込みフレームをGUI表示するか否か
    デフォルト:指定なし
  • --model
    ByteTrackのONNXモデル格納パス
    デフォルト:byte_tracker/model/bytetrack_s.onnx
  • --video
    入力動画の格納パス
    デフォルト:sample.mp4
  • --output_dir
    動画出力パス
    デフォルト:output
  • --score_th
    人検出のスコア閾値
    デフォルト:0.1
  • --score_th
    人検出のNMS閾値
    デフォルト:0.7
  • --input_shape
    推論時入力サイズ
    デフォルト:608,1088
  • --with_p6
    YOLOXモデルのFPN/PANでp6を含むか否か
    デフォルト:指定なし
  • --track_thresh
    追跡時のスコア閾値
    デフォルト:0.5
  • --track_buffer
    見失い時に何フレームの間、追跡対象を保持するか
    デフォルト:30
  • --match_thresh
    追跡時のマッチングスコア閾値
    デフォルト:0.8
  • --min-box-area
    最小のバウンディングボックスのサイズ閾値
    デフォルト:10
  • --mot20
    MOT20を使用しているか否か
    デフォルト:指定なし

Webカメラ:Webカメラ画像に対しByteTrackで追跡した結果をGUI表示します

python demo_webcam_onnx.py
実行時オプション
  • --model
    ByteTrackのONNXモデル格納パス
    デフォルト:byte_tracker/model/bytetrack_s.onnx
  • --device
    カメラデバイス番号の指定
    デフォルト:0
  • --width
    カメラキャプチャ時の横幅
    デフォルト:960
  • --height
    カメラキャプチャ時の縦幅
    デフォルト:540
  • --score_th
    人検出のスコア閾値
    デフォルト:0.1
  • --score_th
    人検出のNMS閾値
    デフォルト:0.7
  • --input_shape
    推論時入力サイズ
    デフォルト:608,1088
  • --with_p6
    YOLOXモデルのFPN/PANでp6を含むか否か
    デフォルト:指定なし
  • --track_thresh
    追跡時のスコア閾値
    デフォルト:0.5
  • --track_buffer
    見失い時に何フレームの間、追跡対象を保持するか
    デフォルト:30
  • --match_thresh
    追跡時のマッチングスコア閾値
    デフォルト:0.8
  • --min-box-area
    最小のバウンディングボックスのサイズ閾値
    デフォルト:10
  • --mot20
    MOT20を使用しているか否か
    デフォルト:指定なし

Reference

Author

高橋かずひと(https://twitter.com/KzhtTkhs)

License

ByteTrack-ONNX-Sample is under MIT License.

License(Movie)

サンプル動画はNHKクリエイティブ・ライブラリーイギリス ウースターのエルガー像を使用しています。

Owner
KazuhitoTakahashi
KazuhitoTakahashi
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023