TransVTSpotter: End-to-end Video Text Spotter with Transformer

Overview

TransVTSpotter: End-to-end Video Text Spotter with Transformer

License: MIT

Introduction

A Multilingual, Open World Video Text Dataset and End-to-end Video Text Spotter with Transformer

Link to our MOVText: A Large-Scale, Multilingual Open World Dataset for Video Text Spotting

Updates

  • (08/04/2021) Refactoring the code.

  • (10/20/2021) The complete code has been released .

ICDAR2015(video) Tracking challenge

Methods MOTA MOTP IDF1 Mostly Matched Partially Matched Mostly Lost
TransVTSpotter 45.75 73.58 57.56 658 611 647

Notes

  • The training time is on 8 NVIDIA V100 GPUs with batchsize 16.
  • We use the models pre-trained on COCOTextV2.
  • We do not release the recognition code due to the company's regulations.

Demo

Installation

The codebases are built on top of Deformable DETR and TransTrack.

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4
  • Python>=3.7
  • PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this
  • OpenCV is optional and needed by demo and visualization

Steps

  1. Install and build libs
git clone [email protected]:weijiawu/TransVTSpotter.git
cd TransVTSpotter
cd models/ops
python setup.py build install
cd ../..
pip install -r requirements.txt
  1. Prepare datasets and annotations
# pretrain COCOTextV2
python3 track_tools/convert_COCOText_to_coco.py

# ICDAR15
python3 track_tools/convert_ICDAR15video_to_coco.py

COCOTextV2 dataset is available in COCOTextV2.

python3 track_tools/convert_crowdhuman_to_coco.py

ICDAR2015 dataset is available in icdar2015.

python3 track_tools/convert_mot_to_coco.py
  1. Pre-train on COCOTextV2
python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_track.py  --output_dir ./output/Pretrain_COCOTextV2 --dataset_file pretrain --coco_path ./Data/COCOTextV2 --batch_size 2  --with_box_refine --num_queries 500 --epochs 300 --lr_drop 100 --resume ./output/Pretrain_COCOTextV2/checkpoint.pth

python3 track_tools/Pretrain_model_to_mot.py

The pre-trained model is available Baidu Netdisk, password:59w8. Google Netdisk

And the MOTA 44% can be found here password:xnlw. Google Netdisk

  1. Train TransVTSpotter
python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_track.py  --output_dir ./output/ICDAR15 --dataset_file text --coco_path ./Data/ICDAR2015_video --batch_size 2  --with_box_refine  --num_queries 300 --epochs 80 --lr_drop 40 --resume ./output/Pretrain_COCOTextV2/pretrain_coco.pth
  1. Visualize TransVTSpotter
python3 track_tools/Evaluation_ICDAR15_video/vis_tracking.py

License

TransVTSpotter is released under MIT License.

Citing

If you use TranVTSpotter in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@article{wu2021opentext,
  title={A Bilingual, OpenWorld Video Text Dataset and End-to-end Video Text Spotter with Transformer},
  author={Weijia Wu, Debing Zhang, Yuanqiang Cai, Sibo Wang, Jiahong Li, Zhuang Li, Yejun Tang, Hong Zhou},
  journal={35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks},
  year={2021}
}
Owner
weijiawu
computer version, OCR I am looking for a research intern or visiting chance.
weijiawu
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
TianyuQi 10 Dec 11, 2022
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022