Interactive dimensionality reduction for large datasets

Related tags

Deep Learningblossom
Overview

BlosSOM 🌼

BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimensional datasets, and produce great-looking 2-dimensional visualizations.

WARNING: BlosSOM is still under development, some stuff may not work right, but things will magically improve without notice. Feel free to open an issue if something looks wrong.

screenshot

BlosSOM was developed at the MFF UK Prague, in cooperation with IOCB Prague.

MFF logo  IOCB logo 

Overview

BlosSOM creates a landmark-based model of the dataset, and dynamically projects all dataset point to your screen (using EmbedSOM). Several other algorithms and tools are provided to manage the landmarks; a quick overview follows:

  • High-dimensional landmark positioning:
    • Self-organizing maps
    • k-Means
  • 2D landmark positioning
    • k-NN graph generation (only adds edges, not vertices)
    • force-based graph layouting
    • dynamic t-SNE
  • Dimensionality reduction
    • EmbedSOM
    • CUDA EmbedSOM (with roughly 500x speedup, enabling smooth display of a few millions of points)
  • Manual landmark position optimization
  • Visualization settings (colors, transparencies, cluster coloring, ...)
  • Dataset transformations and dimension scaling
  • Import from matrix-like data files
    • FCS3.0 (Flow Cytometry Standard files)
    • TSV (Tab-separated CSV)
  • Export of the data for plotting

Compiling and running BlosSOM

You will need cmake build system and SDL2.

For CUDA EmbedSOM to work, you need the NVIDIA CUDA toolkit. Append -DBUILD_CUDA=1 to cmake options to enable the CUDA version.

Windows (Visual Studio 2019)

Dependencies

The project requires SDL2 as an external dependency:

  1. install vcpkg tool and remember your vcpkg directory
  2. install SDL: vcpkg install SDL2:x64-windows

Compilation

git submodule init
git submodule update

mkdir build
cd build

# You need to fix the path to vcpkg in the following command:
cmake .. -G "Visual Studio 16 2019" -A x64 -DCMAKE_BUILD_TYPE="Release" -DCMAKE_INSTALL_PREFIX=./inst -DCMAKE_TOOLCHAIN_FILE=your-vcpkg-clone-directory/scripts/buildsystems/vcpkg.cmake

cmake --build . --config Release
cmake --install . --config Release

Running

Open Visual Studio solution BlosSOM.sln, set blossom as startup project, set configuration to Release and run the project.

Linux (and possibly other unix-like systems)

Dependencies

The project requires SDL2 as an external dependency. Install libsdl2-dev (on Debian-based systems) or SDL2-devel (on Red Hat-based systems), or similar (depending on the Linux distribution). You should be able to install cmake package the same way.

Compilation

git submodule init
git submodule update

mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=./inst    # or any other directory
make install                              # use -j option to speed up the build

Running

./inst/bin/blossom

Documentation

Quickstart

  1. Click on the "plus" button on the bottom right side of the window
  2. Choose Open file (the first button from the top) and open a file from the demo_data/ directory
  3. You can now add and delete landmarks using ctrl+mouse click, and drag them around.
  4. Use the tools and settings available under the "plus" button to optimize the landmark positions and get a better visualization.

See the HOWTO for more details and hints.

Performance and CUDA

If you pass -DBUILD_CUDA=1 to the cmake commands, you will get extra executable called blossom_cuda (or blossom_cuda.exe, on Windows).

The 2 versions of BlosSOM executable differ mainly in the performance of EmbedSOM projection, which is more than 100Γ— faster on GPUs than on CPUs. If the dataset gets large, only a fixed-size slice of the dataset gets processed each frame (e.g., at most 1000 points in case of CPU) to keep the framerate in a usable range. The defaults in BlosSOM should work smoothly for many use-cases (defaulting at 1k points per frame on CPU and 50k points per frame on GPU).

If required (e.g., if you have a really fast GPU), you may modify the constants in the corresponding source files, around the call sites of clean_range(), which is the function that manages the round-robin refreshing of the data. Functionality that dynamically chooses the best data-crunching rate is being implemented and should be available soon.

License

BlosSOM is licensed under GPLv3 or later. Several small libraries bundled in the repository are licensed with MIT-style licenses.

SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes StΓ€rk 355 Jan 03, 2023
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 01, 2023
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023