PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

Related tags

Deep LearningFSGAN
Overview

FSGAN

  • Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge".

  • This project achieve the translation between face photos and artistic portrait drawings using a GAN-based model. You may find useful information in training/testing tips.

  • 📕 Find our paper on arXiv.

  • Try our online Colab demo to generate your own facial sketches.

Our Proposed Framework

Framework-FSGAN

Sample Results

Teaser

Prerequisites

  • Ubuntu >= 18.04
  • Python >= 3.6
  • Our model can only train on GPU >=32 GB at present

Getting Started

Installation

  • Install Pytorch==1.9.0, torchvision==0.10.0 and other dependencies (e.g., visdom and dominate). You can install all the dependencies by
pip install -r requirements.txt

Dataset

We conduct all the experiments on the currently largest Facial Sketch Synthesis (FSS) dataset FS2K. For more details about this dataset, please visit its repo.

In this project, we follow the APDrawingGAN to do some preprocessing on original images, including aligning photo by key points (MTCNN), segment human portrait regions (U2-Net). You can download the preprocessed FS2K dataset here.

If you want to conduct the preprocessing on other images, see preprocessing section.

Train

  • Run python -m visdom.server

  • python train.py --dataroot /home/pz1/datasets/fss/FS2K_data/train/photo/ --checkpoints_dir checkpoints --name ckpt_0 \
    --use_local --discriminator_local --niter 150 --niter_decay 0 --save_epoch_freq 1
  • If you run on DGX-server, you can use sub_by_id.sh to set up many experiments one time.
  • To see losses in training, please refer to log file slurm.out.

Test

Download the weights of pretrained models from the folder for this FSS task on google-drive and specify the path of weights in train/test shell script.

  • To test a single model, please run single_model_test.sh.
  • To test a series of models, please run test_ours.sh.
  • Remember to specify the exp_id and epoch_num in these shell scripts.
  • You can also download our results and all other relevant stuff in this google-drive folder.

Training/Test Tips

Best practice for training and testing your models.

Acknowledgments

Thanks to the great codebase of APDrawingGAN.

Citation

If you find our code and metric useful in your research, please cite our papers.

@aticle{Fan2021FS2K,
  title={Deep Facial Synthesis: A New Challenge},
  author={Deng-Ping, Fan and Ziling, Huang and Peng, Zheng and Hong, Liu and Xuebin, Qin and Luc, Van Gool},
  journal={arXiv},
  year={2021}
}

@article{Fan2019ScootAP,
  title={Scoot: A Perceptual Metric for Facial Sketches},
  author={Deng-Ping Fan and Shengchuan Zhang and Yu-Huan Wu and Yun Liu and Ming-Ming Cheng and Bo Ren and Paul L. Rosin and Rongrong Ji},
  journal={2019 IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2019},
  pages={5611-5621}
}

Owner
Deng-Ping Fan
Postdoctoral Scholar
Deng-Ping Fan
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
sktime companion package for deep learning based on TensorFlow

NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and

sktime 573 Jan 05, 2023
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021