[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

Overview

PG-MORL

This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control (ICML 2020).

In this paper, we propose an evolutionary learning algorithm to compute a high-quality and dense Pareto solutions for multi-objective continuous robot control problems. We also design seven multi-objective continuous control benchmark problems based on Mujoco, which are also included in this repository. This repository also contains the code for the baseline algorithms in the paper.

teaser

Installation

Prerequisites

  • Operating System: tested on Ubuntu 16.04 and Ubuntu 18.04.
  • Python Version: >= 3.7.4.
  • PyTorch Version: >= 1.3.0.
  • MuJoCo : install mujoco and mujoco-py of version 2.0 by following the instructions in mujoco-py.

Install Dependencies

You can either install the dependencies in a conda virtual env (recomended) or manually.

For conda virtual env installation, simply create a virtual env named pgmorl by:

conda env create -f environment.yml

If you prefer to install all the dependencies by yourself, you could open environment.yml in editor to see which packages need to be installed by pip.

Run the Code

The training related code are in the folder morl. We provide the scripts in scrips folder to run our algorithm/baseline algorithms on each problem described in the paper, and also provide several visualization scripts in scripts/plot folder for you to visualize the computed Pareto policies and the training process.

Precomputed Pareto Results

While you can run the training code the compute the Pareto policies from scratch by following the training steps below, we also provide the precomputed Pareto results for each problem. You can download them for each problem separately in this google drive link and directly visualize them with the visualization instructions to play with the results. After downloading the precomputed results, you can unzip it, create a results folder under the project root directory, and put the downloaded file inside.

Benchmark Problems

We design seven multi-objective continuous control benchmark problems based on Mujoco simulation, including Walker2d-v2, HalfCheetah-v2, Hopper-v2, Ant-v2, Swimmer-v2, Humanoid-v2, and Hopper-v3. A suffix of -v3 indicates a three-objective problem. The reward (i.e. objective) functions in each problem are designed to have similar scales. All environments code can be found in environments/mujoco folder. To avoid conflicting to the original mujoco environment names, we add a MO- prefix to the name of each environment. For example, the environment name for Walker2d-v2 is MO-Walker2d-v2.

Train

The main entrance of the training code is at morl/run.py. We provide a training script in scripts folder for each problem for you to easily start with. You can just follow the following steps to see how to run the training for each problem by each algorithm (our algorithm and baseline algorithms).

  • Enter the project folder

    cd PGMORL
    
  • Activate the conda env:

    conda activate pgmorl
    
  • To run our algorithm on Walker2d-v2 for a single run:

    python scripts/walker2d-v2.py --pgmorl --num-seeds 1 --num-processes 1
    

    You can also set other flags as arguments to run the baseline algorithms (e.g. --ra, --moead, --pfa, --random). Please refer to the python scripts for more details about the arguments.

  • By default, the results are stored in results/[problem name]/[algorithm name]/[seed idx].

Visualization

  • We provide a script to visualize the computed/downloaded Pareto results.

    python scripts/plot/ep_obj_visualize_2d.py --env MO-Walker2d-v2 --log-dir ./results/Walker2d-v2/pgmorl/0/
    

    You can replace MO-Walker2d-v2 to your problem name, and replace the ./results/Walker2d-v2/pgmorl/0 by the path to your stored results.

    It will show a plot of the computed Pareto policies in the performance space. By double-click the point in the plot, it will automatically open a new window and render the simulation for the selected policy.

  • We also provide a script to help you visualize the evolution process of the policy population.

    python scripts/plot/training_visualize_2d.py --env MO-Walker2d-v2 --log-dir ./results/Walker2d-v2/pgmorl/0/
    

    It will plot the policy population (gray points) in each generation with some other useful information. The black points are the policies on the Pareto front, the green circles are the selected policies to be optimized in next generation, the red points are the predicted offsprings and the green points are the real offsprings. You can interact with the plot with the keyboard. For example, be pressing left/right, you can evolve the policy population by generation. You can refer to the plot scripts for the full description of the allowable operations.

Reproducibility

We run all our experiments on VM instances with 96 Intel Skylake vCPUs and 86.4G memory on Google Cloud Platform without GPU.

Acknowledgement

We use the implementation of pytorch-a2c-ppo-acktr-gail as the underlying PPO implementation and modify it into our Multi-Objective Policy Gradient algorithm.

Citation

If you find our paper or code is useful, please consider citing:

@inproceedings{xu2020prediction,
  title={Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control},
  author={Xu, Jie and Tian, Yunsheng and Ma, Pingchuan and Rus, Daniela and Sueda, Shinjiro and Matusik, Wojciech},
  booktitle={Proceedings of the 37th International Conference on Machine Learning},
  year={2020}
}
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022