State-of-the-art language models can match human performance on many tasks

Overview

Status: Archive (code is provided as-is, no updates expected)

Grade School Math

[Blog Post] [Paper]

State-of-the-art language models can match human performance on many tasks, but they still struggle to robustly perform multi-step mathematical reasoning. To diagnose the failures of current models and support research, we're releasing GSM8K, a dataset of 8.5K high quality linguistically diverse grade school math word problems. We find that even the largest transformer models fail to achieve high test performance, despite the conceptual simplicity of this problem distribution.

Dataset Details

GSM8K consists of 8.5K high quality grade school math problems created by human problem writers. We segmented these into 7.5K training problems and 1K test problems. These problems take between 2 and 8 steps to solve, and solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ - / *) to reach the final answer. A bright middle school student should be able to solve every problem.

The raw data files can be found in:

  • grade_school_math/data/train.jsonl
  • grade_school_math/data/test.jsonl

Each line of those files corresponds to a single grade school math problem, saved as a json dictionary (with a "question" key and an "answer" key). The answer is formatted such that it uses calculation annotations and so that the final numeric solution is the final line of the solution, preceded by ####.

Calculation Annotations

Our models frequently fail to accurately perform calculations. Although larger models make fewer arithmetic mistakes than smaller models, this remains a common source of errors. To mitigate this issue, we train our models to use a calculator by injecting calculation annotations into the training set. At training time, we simply finetune on this language data as is. At test time, a calculator will override sampling when the model chooses to use these annotations. An example implementation of the calculator sampling can be found in calculator.py.

If you would like to remove the calculator annotations, simply remove any string that starts with << and ends with >>.

Solution Extracting

To extract the final numeric solution for a particular question, simply parse the completion to extract the numeric value immediately following the #### token. Some example python code to do so is shown in dataset.py:is_correct.

Socratic Dataset

During our research, we also investigated a modified solution format that injects automatically generated "Socratic subquestions" before each step. Although we ultimately did not use this format for any experiments in the paper, we make this data available to anyone who is interested.

We show an example below, with the socratic subquestions in bold:

A carnival snack booth made $50 selling popcorn each day. It made three times as much selling cotton candy. For a 5-day activity, the booth has to pay $30 rent and $75 for the cost of the ingredients. How much did the booth earn for 5 days after paying the rent and the cost of ingredients?
How much did the booth make selling cotton candy each day? ** The booth made $50 x 3 = $<<50*3=150>>150 selling cotton candy each day.
How much did the booth make in a day? ** In a day, the booth made a total of $150 + $50 = $<<150+50=200>>200.
How much did the booth make in 5 days? ** In 5 days, they made a total of $200 x 5 = $<<200*5=1000>>1000.
How much did the booth have to pay? ** The booth has to pay a total of $30 + $75 = $<<30+75=105>>105.
How much did the booth earn after paying the rent and the cost of ingredients? ** Thus, the booth earned $1000 - $105 = $<<1000-105=895>>895.

We generated each Socratic subquestion by conditioning on each ground truth (contractor-provided) step in a solution, using a model specifically finetuned for this task (on around 800 examples). To construct the full Socratic dataset, each step in the solution was prefixed by the model-generated Socratic subquestion. Steps were otherwise left untouched.

These data files can be found in:

  • grade_school_math/data/train_socratic.jsonl
  • grade_school_math/data/test_socratic.jsonl

View Model Solutions

For each test question, we provide solutions generated from 6B finetuning, 6B verification, 175B finetuning and 175B verification. This data can be found in:

  • grade_school_math/data/example_model_solutions.jsonl

To view these results problem-by-problem, run:

python view_model_solutions.py

Citation

Please use the below BibTeX entry to cite this dataset:

@article{cobbe2021gsm8k,
  title={Training Verifiers to Solve Math Word Problems},
  author={Cobbe, Karl and Kosaraju, Vineet and Bavarian, Mohammad and Hilton, Jacob and Nakano, Reiichiro and Hesse, Christopher and Schulman, John},
  journal={arXiv preprint arXiv:2110.14168},
  year={2021}
}

Usage

We present a basic example of training a GPT2 sized model and using the calculator in the sampling process. We include this code for illustrative purposes only. This pipeline was not used for any experiments in the paper.

Training a Model

python train.py

Sampling from the Model

python sample.py

The core calculator sampling logic can be found in calculator.py:sample. Note that this code is inefficient as implemented. Specifically, the function does not support batches, and does not cache activations from previous tokens.

Owner
OpenAI
OpenAI
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022