State-of-the-art language models can match human performance on many tasks

Overview

Status: Archive (code is provided as-is, no updates expected)

Grade School Math

[Blog Post] [Paper]

State-of-the-art language models can match human performance on many tasks, but they still struggle to robustly perform multi-step mathematical reasoning. To diagnose the failures of current models and support research, we're releasing GSM8K, a dataset of 8.5K high quality linguistically diverse grade school math word problems. We find that even the largest transformer models fail to achieve high test performance, despite the conceptual simplicity of this problem distribution.

Dataset Details

GSM8K consists of 8.5K high quality grade school math problems created by human problem writers. We segmented these into 7.5K training problems and 1K test problems. These problems take between 2 and 8 steps to solve, and solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ - / *) to reach the final answer. A bright middle school student should be able to solve every problem.

The raw data files can be found in:

  • grade_school_math/data/train.jsonl
  • grade_school_math/data/test.jsonl

Each line of those files corresponds to a single grade school math problem, saved as a json dictionary (with a "question" key and an "answer" key). The answer is formatted such that it uses calculation annotations and so that the final numeric solution is the final line of the solution, preceded by ####.

Calculation Annotations

Our models frequently fail to accurately perform calculations. Although larger models make fewer arithmetic mistakes than smaller models, this remains a common source of errors. To mitigate this issue, we train our models to use a calculator by injecting calculation annotations into the training set. At training time, we simply finetune on this language data as is. At test time, a calculator will override sampling when the model chooses to use these annotations. An example implementation of the calculator sampling can be found in calculator.py.

If you would like to remove the calculator annotations, simply remove any string that starts with << and ends with >>.

Solution Extracting

To extract the final numeric solution for a particular question, simply parse the completion to extract the numeric value immediately following the #### token. Some example python code to do so is shown in dataset.py:is_correct.

Socratic Dataset

During our research, we also investigated a modified solution format that injects automatically generated "Socratic subquestions" before each step. Although we ultimately did not use this format for any experiments in the paper, we make this data available to anyone who is interested.

We show an example below, with the socratic subquestions in bold:

A carnival snack booth made $50 selling popcorn each day. It made three times as much selling cotton candy. For a 5-day activity, the booth has to pay $30 rent and $75 for the cost of the ingredients. How much did the booth earn for 5 days after paying the rent and the cost of ingredients?
How much did the booth make selling cotton candy each day? ** The booth made $50 x 3 = $<<50*3=150>>150 selling cotton candy each day.
How much did the booth make in a day? ** In a day, the booth made a total of $150 + $50 = $<<150+50=200>>200.
How much did the booth make in 5 days? ** In 5 days, they made a total of $200 x 5 = $<<200*5=1000>>1000.
How much did the booth have to pay? ** The booth has to pay a total of $30 + $75 = $<<30+75=105>>105.
How much did the booth earn after paying the rent and the cost of ingredients? ** Thus, the booth earned $1000 - $105 = $<<1000-105=895>>895.

We generated each Socratic subquestion by conditioning on each ground truth (contractor-provided) step in a solution, using a model specifically finetuned for this task (on around 800 examples). To construct the full Socratic dataset, each step in the solution was prefixed by the model-generated Socratic subquestion. Steps were otherwise left untouched.

These data files can be found in:

  • grade_school_math/data/train_socratic.jsonl
  • grade_school_math/data/test_socratic.jsonl

View Model Solutions

For each test question, we provide solutions generated from 6B finetuning, 6B verification, 175B finetuning and 175B verification. This data can be found in:

  • grade_school_math/data/example_model_solutions.jsonl

To view these results problem-by-problem, run:

python view_model_solutions.py

Citation

Please use the below BibTeX entry to cite this dataset:

@article{cobbe2021gsm8k,
  title={Training Verifiers to Solve Math Word Problems},
  author={Cobbe, Karl and Kosaraju, Vineet and Bavarian, Mohammad and Hilton, Jacob and Nakano, Reiichiro and Hesse, Christopher and Schulman, John},
  journal={arXiv preprint arXiv:2110.14168},
  year={2021}
}

Usage

We present a basic example of training a GPT2 sized model and using the calculator in the sampling process. We include this code for illustrative purposes only. This pipeline was not used for any experiments in the paper.

Training a Model

python train.py

Sampling from the Model

python sample.py

The core calculator sampling logic can be found in calculator.py:sample. Note that this code is inefficient as implemented. Specifically, the function does not support batches, and does not cache activations from previous tokens.

Owner
OpenAI
OpenAI
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022