Yet another video caption

Overview

yet-another-video-caption

数据集配置

准备数据集

将原始数据集重新组织成统一的格式后,放置于 ./dataset 中。

数据集的组织格式为:

./dataset
    train/
        video/
            *.avi
        ...
        info.json
    test/
        video/ 
            *.avi
        ...

自动配置

通常你只需要使用数据集的一个子集,此时请考虑运行自动抽取脚本 makedata.py

所有数据位于 ./data 中。

所有视频(包括 train/val/test) 位于 ./data/video 中。

所有视频信息(包括 train/val/test)输入到 ./data/input.json

程序会在 ./data 中产生一些中间信息,请勿修改。

依赖

pip install tqdm pillow pretrainedmodels nltk

此外,请确保已当前环境下已经正确配置 CUDA 运行库,CUDNN,Pytorch(GPU),ffmpeg,JDK

食用步骤

  1. 确保数据集已正确配置

  2. 确保依赖已经正确安装

  3. 抽取数据,将你希望使用的 train/val/test 划分参数输入 makedata.py 中,然后执行该脚本

  4. 依次执行(请自行修改 batch_sizesaved_model 参数!)

python prepro_feats.py --output_dir data/feats/resnet152 --model resnet152
python prepro_vocab.py
python train.py --epochs 3001 --batch_size 1 --checkpoint_path data/save --feats_dir data/feats/resnet152 --model S2VTAttModel --with_c3d 0 --dim_vid 2048
python eval.py --recover_opt data/save/opt_info.json --saved_model data/save/model_10.pth --batch_size 1

速度测试

以下结果测试于单张 2080Ti

预处理(ResNet152 特征提取):共 40min

训练速度(batch_size=32):6.20 it/s

Todo

大小写问题

References

https://github.com/xiadingZ/video-caption.pytorch

Owner
Fan Zhimin
Dreams of love and hope never die.
Fan Zhimin
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022