Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Overview

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology, LMRL Workshop, NeurIPS 2021. [Workshop] [arXiv]
Richard. J. Chen, Rahul G. Krishnan
@article{chen2022self,
  title={Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology},
  author={Chen, Richard J and Krishnan, Rahul G},
  journal={Learning Meaningful Representations of Life, NeurIPS 2021},
  year={2021}
}
DINO illustration

Summary / Main Findings:

  1. In head-to-head comparison of SimCLR versus DINO, DINO learns more effective pretrained representations for histopathology - likely due to 1) not needing negative samples (histopathology has lots of potential class imbalance), 2) capturing better inductive biases about the part-whole hierarchies of how cells are spatially organized in tissue.
  2. ImageNet features do lag behind SSL methods (in terms of data-efficiency), but are better than you think on patch/slide-level tasks. Transfer learning with ImageNet features (from a truncated ResNet-50 after 3rd residual block) gives very decent performance using the CLAM package.
  3. SSL may help mitigate domain shift from site-specific H&E stainining protocols. With vanilla data augmentations, global structure of morphological subtypes (within each class) are more well-preserved than ImageNet features via 2D UMAP scatter plots.
  4. Self-supervised ViTs are able to localize cell location quite well w/o any supervision. Our results show that ViTs are able to localize visual concepts in histopathology in introspecting the attention heads.

Updates

Stay tuned for more updates :).

  • TBA: Pretrained SimCLR and DINO models on TCGA-Lung (Larger working paper, in submission).
  • TBA: Pretrained SimCLR and DINO models on TCGA-PanCancer (Larger working paper, in submission).
  • TBA: PEP8-compliance (cleaning and organizing code).
  • 03/04/2022: Reproducible and largely-working codebase that I'm satisfied with and have heavily tested.

Pre-Reqs

We use Git LFS to version-control large files in this repository (e.g. - images, embeddings, checkpoints). After installing, to pull these large files, please run:

git lfs pull

Pretrained Models

SIMCLR and DINO models were trained for 100 epochs using their vanilla training recipes in their respective papers. These models were developed on 2,055,742 patches (256 x 256 resolution at 20X magnification) extracted from diagnostic slides in the TCGA-BRCA dataset, and evaluated via K-NN on patch-level datasets in histopathology.

Note: Results should be taken-in w.r.t. to the size of dataset and duraration of training epochs. Ideally, longer training with larger batch sizes would demonstrate larger gains in SSL performance.

Arch SSL Method Dataset Epochs Dim K-NN Download
ResNet-50 Transfer ImageNet N/A 1024 0.935 N/A
ResNet-50 SimCLR TCGA-BRCA 100 2048 0.938 Backbone
ViT-S/16 DINO TCGA-BRCA 100 384 0.941 Backbone

Data Download + Data Preprocessing

For CRC-100K and BreastPathQ, pre-extracted embeddings are already available and processed in ./embeddings_patch_library. See patch_extraction_utils.py on how these patch datasets were processed.

Additional Datasets + Custom Implementation: This codebase is flexible for feature extraction on a variety of different patch datasets. To extend this work, simply modify patch_extraction_utils.py with a custom Dataset Loader for your dataset. As an example, we include BCSS (results not yet updated in this work).

  • BCSS (v1): You can download the BCSS dataset from the official Grand Challenge link. For this dataset, we manually developed the train and test dataset splits and labels using majority-voting. Reproducibility for the raw BCSS dataset may be not exact, but we include the pre-extracted embeddings of this dataset in ./embeddings_patch_library (denoted as version 1).

Evaluation: K-NN Patch-Level Classification on CRC-100K + BreastPathQ

Run the notebook patch_extraction.ipynb, followed by patch_evaluation.ipynb. The evaluation notebook should run "out-of-the-box" with Git LFS.

table2

Evaluation: Slide-Level Classification on TCGA-BRCA (IDC versus ILC)

Install the CLAM Package, followed by using the 10-fold cross-validation splits made available in ./slide_evaluation/10foldcv_subtype/tcga_brca. Tensorboard train + validation logs can visualized via:

tensorboard --logdir ./slide_evaluation/results/
table1

Visualization: Creating UMAPs

Install umap-learn (can be tricky to install if you have incompatible dependencies), followed by using the following code snippet in patch_extraction_utils.py, and is used in patch_extraction.ipynb to create Figure 4.

UMAP

Visualization: Attention Maps

Attention visualizations (reproducing Figure 3) can be performed via walking through the following notebook at attention_visualization_256.ipynb.

Attention Visualization

Issues

  • Please open new threads or report issues directly (for urgent blockers) to [email protected].
  • Immediate response to minor issues may not be available.

Acknowledgements, License & Usage

  • Part of this work was performed while at Microsoft Research. We thank the BioML group at Microsoft Research New England for their insightful feedback.
  • This work is still under submission in a formal proceeding. Still, if you found our work useful in your research, please consider citing our paper at:
@article{chen2022self,
  title={Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology},
  author={Chen, Richard J and Krishnan, Rahul G},
  journal={Learning Meaningful Representations of Life, NeurIPS 2021},
  year={2021}
}

© This code is made available under the GPLv3 License and is available for non-commercial academic purposes.

Owner
Richard Chen
Ph.D. Candidate at Harvard
Richard Chen
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022