Scenarios, tutorials and demos for Autonomous Driving

Overview

The Autonomous Driving Cookbook (Preview)


NOTE:

This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is currently a work in progress. We will continue to add more tutorials and scenarios based on requests from our users and the availability of our collaborators.


Autonomous driving has transcended far beyond being a crazy moonshot idea over the last half decade or so. It has quickly become one of the biggest technologies today that promises to shape our tomorrow, not very unlike when cars first came into existence. A big driver powering this change is the recent advances in software (Artificial Intelligence), hardware (GPUs, FPGAs etc.) and cloud computing, which have enabled ingest and processing of large amounts of data, making it possible for companies to push for levels 4 and 5 of autonomy. Achieving those levels of autonomy though, require training on hundreds of millions and sometimes hundreds of billions of miles worth of training data to demonstrate reliability, according to a report from RAND.

Despite the large amount of data collected every day, it is still insufficient to meet the demands of the ever increasing AI model complexity required by autonomous vehicles. One way to collect such huge amounts of data is through the use of simulation. Simulation makes it easy to not only collect data from a variety of different scenarios which would take days, if not months in the real world (like different weather conditions, varying daylight etc.), it also provides a safe test bed for trained models. With behavioral cloning, you can easily prepare highly efficient models in simulation and fine tune them using a relatively low amount of real world data. Then there are models built using techniques like Reinforcement Learning, which can only be trained in simulation. With simulators such as AirSim, working on these scenarios has become very easy.

We believe that the best way to make a technology grow is by making it easily available and accessible to everyone. This is best achieved by making the barrier of entry to it as low as possible. At Microsoft, our mission is to empower every person and organization on the planet to achieve more. That has been our primary motivation behind preparing this cookbook. Our aim with this project is to help you get quickly acquainted and familiarized with different onboarding scenarios in autonomous driving so you can take what you learn here and employ it in your everyday job with a minimal barrier to entry.

Who is this cookbook for?

Our plan is to make this cookbook a valuable resource for beginners, researchers and industry experts alike. Tutorials in the cookbook are presented as Jupyter notebooks, making it very easy for you to download the instructions and get started without a lot of setup time. To help this further, wherever needed, tutorials come with their own datasets, helper scripts and binaries. While the tutorials leverage popular open-source tools (like Keras, TensorFlow etc.) as well as Microsoft open-source and commercial technology (like AirSim, Azure virtual machines, Batch AI, CNTK etc.), the primary focus is on the content and learning, enabling you to take what you learn here and apply it to your work using tools of your choice.

We would love to hear your feedback on how we can evolve this project to reach that goal. Please use the GitHub Issues section to get in touch with us regarding ideas and suggestions.

Tutorials available

Currently, the following tutorials are available:

Following tutorials will be available soon:

  • Lane Detection using Deep Learning

Contributing

Please read the instructions and guidelines for collaborators if you wish to add a new tutorial to the cookbook.

This project welcomes and encourages contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022