[EMNLP 2021] LM-Critic: Language Models for Unsupervised Grammatical Error Correction

Overview

LM-Critic: Language Models for Unsupervised Grammatical Error Correction

This repo provides the source code & data of our paper: LM-Critic: Language Models for Unsupervised Grammatical Error Correction (EMNLP 2021).

@InProceedings{yasunaga2021language,
  author =  {Michihiro Yasunaga and Jure Leskovec and Percy Liang},
  title =   {LM-Critic: Language Models for Unsupervised Grammatical Error Correction},
  year =    {2021},  
  booktitle = {Empirical Methods in Natural Language Processing (EMNLP)},  
}

Overview

We developed a new method to use a pretrained language model (e.g. GPT2) to predict if a sentence is grammatical, which we call LM-Critic. You can play with this LM-Critic as described in Section 1. below. The idea is to deem a sentence to be grammatical if the language model assigns it a higher probability than candidates in its local neighborhood.

We then use the LM-Critic to generate training data for grammatical error correction (GEC) from unlabeled raw text, using the BIFI algorithm. This allows us to train GEC models in an unsupervised way. See Section 2. below.

How LM-Critic works

LM-Critic for GEC: We use LM-Critic to learn GEC models

0. Dependencies

Run the following commands to create a conda environment (assuming CUDA10.1):

conda create -n lm-critic python=3.8
conda activate lm-critic
pip install torch==1.6.0 torchvision==0.7.0
pip install transformers==4.3.3 datasets==1.3.0 absl-py rouge-score
pip install nltk wandb editdistance spacy==3.0.5
python3 -m nltk.downloader punkt

To use the ERRANT scorer for GEC evaluation, create another conda environment separately, as follows:

conda create -n errant200 python=3.6
conda activate errant200
pip3 install errant==2.0.0
python3 -m spacy download en

1. Use LM-Critic

The LM-Critic is defined in critic/critic.py. To play with it, you can run:

CUDA_VISIBLE_DEVICES=0 python3 critic/critic.py

This will prompt you for a sentence input, and returns the judgment (Good: grammatical, Bad: ungrammatical) along with the probability score of the input sentence. For example,

Enter a sentence: I like apple.
Bad! Your sentence log(p) = -22.333
Neighbor sentence with highest log(p): I like apples. (= -19.570)

Enter a sentence: I like apples.
Good! Your sentence log(p) = -19.570

To run intrinsic evaluation of LM-Critic on a test suite, run:

CUDA_VISIBLE_DEVICES=0 python3 eval_critic/eval_critic.py

You can import the LM-Critic function (from critic.critic import gpt2_critic) for your own code as done in this script.

2. Train/run grammatical error correction models

Change the working directory to gec/. First, download all the data (GEC benchmarks and training data) by running ./download_data.sh.

Round 0

Here we train an initial fixer on synthetic GEC data. Run the commands in src/run-round0.sh.

  • This corresponds to the "Transformer" baseline in the paper Table 4.
  • The original synthetic data was dowloaded from here, and our processed data is available at data/round0__synthetic/synthetic_paired_data_9M.json

Round 1

Here we use the BIFI algorithm and unlabeled text data to train an improved fixer. Run the commands in src/run-round1.sh.

  • Specifically, we perform the following four steps: (a) apply the current fixer (from Round 0) to unlabeled sentences and keep outputs that LM-Critic judges as good; (b) train a breaker on the paired data generated in Step (a); (c) apply the trained breaker on unlabeled sentences and keep outputs that LM-Critic judges as bad; (d) train the fixer on the paired data generated so far (Step (a) + Step (c) + synthetic data from Round0).
  • This corresponds to the "+ BIFI" in the paper Table 4.
  • The original unlabeled text data was downloaded from Yahoo! Answer dataset and Wikipedia revision dataset (we take sentences pre revision). Our processed paired data used in Step (d) is available at data/round1__BIFI/BIFI_paired_data_9M.json

For evaluation, we use ERRANT and M^2Scorer. ERRANT is set up in the conda environment described above (errant200) and M^2Scorer is set up in the download script.

Owner
Michihiro Yasunaga
PhD Student in Computer Science
Michihiro Yasunaga
Adversarial Examples for Extreme Multilabel Text Classification

Adversarial Examples for Extreme Multilabel Text Classification The code is adapted from the source codes of BERT-ATTACK [1], APLC_XLNet [2], and Atte

1 May 14, 2022
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
Every Google, Azure & IBM text to speech voice for free

TTS-Grabber Quick thing i made about a year ago to download any text with any tts voice, over 630 voices to choose from currently. It will split the i

16 Dec 07, 2022
A natural language processing model for sequential sentence classification in medical abstracts.

NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in

Hemanth Chandran 1 Jan 17, 2022
Text preprocessing, representation and visualization from zero to hero.

Text preprocessing, representation and visualization from zero to hero. From zero to hero • Installation • Getting Started • Examples • API • FAQ • Co

Jonathan Besomi 2.7k Jan 08, 2023
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 - treatments and vaccinations.

Project: Text Analysis - This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 -

1 Mar 14, 2022
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Finetune gpt-2 in google colab

gpt-2-colab finetune gpt-2 in google colab sample result (117M) from retraining on A Tale of Two Cities by Charles Di

212 Jan 02, 2023
WikiPron - a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary

WikiPron WikiPron is a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary, as well as a database of pronuncia

213 Jan 01, 2023
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022
NLP, Machine learning

Netflix-recommendation-system NLP, Machine learning About Recommendation algorithms are at the core of the Netflix product. It provides their members

Harshith VH 6 Jan 12, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022