Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Overview

Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2018) dataset, where each question in the dev set is annotated to add a contextual disfluency using the paragraph as a source of distractors.

The final dataset consists of ~12k (disfluent question, answer) pairs. Over 90% of the disfluencies are corrections or restarts, making it a much harder test set for disfluency correction. Disfl-QA aims to fill a major gap between speech and NLP research community. We hope the dataset can serve as a benchmark dataset for testing robustness of models against disfluent inputs.

Our expriments reveal that the state-of-the-art models are brittle when subjected to disfluent inputs from Disfl-QA. Detailed experiments and analyses can be found in our paper.

Dataset Description

Disfl-QA consists of ~12k disfluent questions with the following train/dev/test splits:

File Questions
train.json 7182
dev.json 1000
test.json 3643

Each JSON file consists of original question (SQuAD-v2) and disfluent question (Disfl-QA) in the following format:

{ 
  "squad_v2_id":
  {
    "original": Original question from SQuAD-v2,
    "disfluent": Disfluent question from Disfl-QA
  }, ...
}

Note: The squad_v2_id corresponds to the unique data.paragraphs.qas.id in SQuAD-v2 development set.

Here's an example from the dataset:

 {
  "56ddde6b9a695914005b9628": {
    "original": "In what country is Normandy located?",
    "disfluent": "In what country is Norse found no wait Normandy not Norse?"
  },
  "56ddde6b9a695914005b9629": {
    "original": "When were the Normans in Normandy?",
    "disfluent": "From which countries no tell me when were the Normans in Normandy?"
  },
  "56ddde6b9a695914005b962a": {
    "original": "From which countries did the Norse originate?",
    "disfluent": "From which Norse leader I mean countries did the Norse originate?"
  },
  "56ddde6b9a695914005b962b": {
    "original": "Who was the Norse leader?",
    "disfluent": "When I mean Who was the Norse leader?"
  },
  "56ddde6b9a695914005b962c": {
    "original": "What century did the Normans first gain their separate identity?",
    "disfluent": "When no what century did the Normans first gain their separate identity?"
  },
 }

Citation

If you use or discuss this dataset in your work, please cite it as follows:

@inproceedings{gupta-etal-2021-disflqa,
    title = "{Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering}",
    author = "Gupta, Aditya and Xu, Jiacheng and Upadhyay, Shyam and Yang, Diyi and Faruqui, Manaal",
    booktitle = "Findings of ACL",
    year = "2021"
}

License

Disfl-QA dataset is licensed under CC BY 4.0.

Contact

If you have a technical question regarding the dataset or publication, please create an issue in this repository.

Owner
Google Research Datasets
Datasets released by Google Research
Google Research Datasets
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions

BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable

Maarten Grootendorst 3.6k Jan 07, 2023
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori

Phil Wang 364 Jan 06, 2023
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Yoon Kim 43 Dec 23, 2022
Mkdocs + material + cool stuff

Modern-Python-Doc-Example mkdocs + material + cool stuff Doc is live here Features out of the box amazing good looking website thanks to mkdocs.org an

Francesco Saverio Zuppichini 61 Oct 26, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect.

117 Jan 07, 2023
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
NLP Overview

NLP-Overview Introduction The field of NPL encompasses a variety of topics which involve the computational processing and understanding of human langu

PeterPham 1 Jan 13, 2022
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time

DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches the answers out of 60 billion phrases in Wikipedia, it is also v

Jinhyuk Lee 543 Jan 08, 2023
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. Flair is: A powerful NLP library. Flair allo

flair 12.3k Jan 02, 2023
Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis 왜 한국어 감정 다중분류 모델은 거의 없는 것일까?에서 시작된 프로젝트 Environment: Pytorch, Da

Donghoon Shin 3 Dec 02, 2022
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.

Zihang Dai 6k Jan 07, 2023
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022