Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)

Overview

Structured Super Lottery Tickets in BERT

This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization" (ACL 2021).


Getting Start

  1. python3.6
    Reference to download and install : https://www.python.org/downloads/release/python-360/
  2. install requirements
    > pip install -r requirements.txt

Data

  1. Download data
    sh download.sh
    Please refer to download GLUE dataset: https://gluebenchmark.com/
  2. Preprocess data
    > sh experiments/glue/prepro.sh
    For more data processing details, please refer to this repo.

Verifying Phase Transition Phenomenon

  1. Fine-tune a pre-trained BERT model with single task data, compute importance scores, and generate one-shot structured pruning masks at multiple sparsity levels. E.g., for MNLI, run

    ./scripts/train_mnli.sh GPUID
    
  2. Rewind and evaluate the winning, random, and losing tickets at multiple sparsity levels. E.g., for MNLI, run

    ./scripts/rewind_mnli.sh GPUID
    

You may try tasks with smaller sizes (e.g., SST, MRPC, RTE) to see a more pronounced phase transition.


Multi-task Learning (MTL) with Tickets Sharing

  1. Identify a set of super tickets for each individual task.

    • Identify winning tickets at multiple sparsity levels for each individual task. E.g., for MTDNN-base, run

      ./scripts/prepare_mtdnn_base.sh GPUID
      

      We recommend to use the same optimization settings, e.g., learning rate, optimizer and random seed, in both the ticket identification procedures and the MTL. We empirically observe that the super tickets perform better in MTL in such a case.

    • [Optional] For each individual task, identify a set of super tickets from the winning tickets at multiple sparsity levels. You can skip this step if you wish to directly use the set of super tickets identified by us. If you wish to identify super tickets on your own (This is recommended if you use a different optimization settings, e.g., learning rate, optimizer and random seed, from those in our scripts. These factors may affect the candidacy of super tickets.), we provide the template scripts

      ./scripts/rewind_mnli_winning.sh GPUID
      ./scripts/rewind_qnli_winning.sh GPUID
      ./scripts/rewind_qqp_winning.sh GPUID
      ./scripts/rewind_sst_winning.sh GPUID
      ./scripts/rewind_mrpc_winning.sh GPUID
      ./scripts/rewind_cola_winning.sh GPUID
      ./scripts/rewind_stsb_winning.sh GPUID
      ./scripts/rewind_rte_winning.sh GPUID
      

      These scripts rewind the winning tickets at multiple sparsity levels. You can manually identify the set of super tickets as the set of winning tickets that perform the best among all sparsity levels.

  2. Construct multi-task super tickets by aggregating the identified sets of super tickets of all tasks. E.g., to use the super tickets identified by us, run

    python construct_mtl_mask.py
    

    You can modify the script to use the super tickets identified by yourself.

  3. MTL with tickets sharing. Run

    ./scripts/train_mtdnn.sh GPUID
    

MTL Benchmark

MTL evaluation results on GLUE dev set averaged over 5 random seeds.

Model MNLI-m/mm (Acc) QNLI (Acc) QQP (Acc/F1) SST-2 (Acc) MRPC (Acc/F1) CoLA (Mcc) STS-B (P/S) RTE (Acc) Avg Score Avg Compression
MTDNN, base 84.6/84.2 90.5 90.6/87.4 92.2 80.6/86.2 54.0 86.2/86.4 79.0 82.4 100%
Tickets-Share, base 84.5/84.1 91.0 90.7/87.5 92.7 87.0/90.5 52.0 87.7/87.5 81.2 83.3 92.9%
MTDNN, large 86.5/86.0 92.2 91.2/88.1 93.5 85.2/89.4 56.2 87.2/86.9 83.0 84.4 100%
Tickets-Share, large 86.7/86.0 92.1 91.3/88.4 93.2 88.4/91.5 61.8 89.2/89.1 80.5 85.4 83.3%

Citation

@article{liang2021super,
  title={Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization},
  author={Liang, Chen and Zuo, Simiao and Chen, Minshuo and Jiang, Haoming and Liu, Xiaodong and He, Pengcheng and Zhao, Tuo and Chen, Weizhu},
  journal={arXiv preprint arXiv:2105.12002},
  year={2021}
}

@article{liu2020mtmtdnn,
  title={The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural Language Understanding},
  author={Liu, Xiaodong and Wang, Yu and Ji, Jianshu and Cheng, Hao and Zhu, Xueyun and Awa, Emmanuel and He, Pengcheng and Chen, Weizhu and Poon, Hoifung and Cao, Guihong and Jianfeng Gao},
  journal={arXiv preprint arXiv:2002.07972},
  year={2020}
}

Contact Information

For help or issues related to this package, please submit a GitHub issue. For personal questions related to this paper, please contact Chen Liang ([email protected]).

Owner
Chen Liang
Chen Liang
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

PyTorch implementation of NATSpeech: A Non-Autoregressive Text-to-Speech Framework

A Non-Autoregressive Text-to-Speech (NAR-TTS) framework, including official PyTorch implementation of PortaSpeech (NeurIPS 2021) and DiffSpeech (AAAI 2022)

760 Jan 03, 2023
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
Script to download some free japanese lessons in portuguse from NHK

Nihongo_nhk This is a script to download some free japanese lessons in portuguese from NHK. It can be executed by installing the packages with: pip in

Matheus Alves 2 Jan 06, 2022
中文空间语义理解评测

中文空间语义理解评测 最新消息 2021-04-10 🚩 排行榜发布: Leaderboard 2021-04-05 基线系统发布: SpaCE2021-Baseline 2021-04-05 开放数据提交: 提交结果 2021-04-01 开放报名: 我要报名 2021-04-01 数据集 pa

40 Jan 04, 2023
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022
NLP library designed for reproducible experimentation management

Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can

Feedly 290 Dec 20, 2022
A spaCy wrapper of OpenTapioca for named entity linking on Wikidata

spaCyOpenTapioca A spaCy wrapper of OpenTapioca for named entity linking on Wikidata. Table of contents Installation How to use Local OpenTapioca Vizu

Universitätsbibliothek Mannheim 80 Jan 03, 2023
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
Random-Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Random Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short links

Mohammed Rabil 1 Jan 01, 2022