ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

Overview

ReConsider

ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

The technical details are described in:

@inproceedings{iyer2020reconsider,
 title={RECONSIDER: Re-Ranking using Span-Focused Cross-Attention for Open Domain Question Answering},
 author={Iyer, Srinivasan and Min, Sewon and Mehdad, Yashar and Yih, Wen-tau},
 booktitle={NAACL},
 year={2021}
}

https://arxiv.org/abs/2010.10757

LICENSE

The majority of ReConsider is licensed under CC-BY-NC, however portions of the project are available under separate license terms: huggingface transformers and HotpotQA Utils are licensed under the Apache 2.0 license.

Re-producing results from the paper

The ReConsider models in the paper are trained on the top-100 predictions from the DPR Retriever + Reader model (Karpukhin et al., 2020) on four datasets: NaturalQuestions, TriviaQA, Trec, and WebQ.

We outline all the steps here for NaturalQuestions, but the same steps can be followed for the other datasets.

  1. Environment Setup
pip install -r requirements.txt
  1. [optional] Get the top-100 retrieved passages for each question using the best DPR retriever model for the NQ train, dev, and test sets. We provide these in our repo, but alternatively, you can obtain them by training the DPR retriever from scratch (from here). You can skip this entire step if you are only running ReConsider.
wget http://dl.fbaipublicfiles.com/reconsider/dpr_retriever_outputs/{nq|webq|trec|tqa}-{train|dev|test}-multi.json
  1. [optional] Get the top-100 predictions from the DPR reader (Karpukhin et al., 2020) executed on the output of the DPR retriever, on the NQ train, dev, and test sets. We provide these in our repo, but alternatively, you can obtain them by training the DPR reader from scratch (from here). You can skip this entire step if you are only running ReConsider.
wget http://dl.fbaipublicfiles.com/reconsider/dpr_reader_outputs/ttttt_{train|dev|test}.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json
  1. [optional] Convert DPR reader predictions to the marked-passage format required by ReConsider.
python prepare_marked_dataset.py --answer_json ttttt__train.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json --orig_json {nq|webq|trec|tqa}-train-multi.json --out_json paraphrase_selection_train.{nq|tqa|trec|webq}.{bbase|blarge}.100.qp_mp.nopp.title.json --train_M 100

python prepare_marked_dataset.py --answer_json ttttt_dev.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json --orig_json {nq|webq|trec|tqa}-dev-multi.json --out_json paraphrase_selection_dev.{nq|tqa|trec|webq}.{bbase|blarge}.5.qp_mp.nopp.title.json --dev --test_M 5

python prepare_marked_dataset.py --answer_json ttttt_test.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json --orig_json {nq|webq|trec|tqa}-test-multi.json --out_json paraphrase_selection_test.{nq|tqa|trec|webq}.{bbase|blarge}.5.qp_mp.nopp.title.json --dev --test_M 5

We also provide these files, so that you don't need to execute this command. You can directly download the output files using:

wget http://dl.fbaipublicfiles.com/reconsider/reconsider_inputs/paraphrase_selection_{train|dev|test}.{nq|tqa|trec|webq}.{bbase|blarge}.qp_mp.nopp.title.json
  1. Train ReConsider Models For Base models:
dset={nq|tqa|trec|webq}
python main.py --do_train --output_dir ps.$dset.bbase --train_file paraphrase_selection_train.$dset.bbase.qp_mp.nopp.title.json --predict_file paraphrase_selection_dev.$dset.bbase.qp_mp.nopp.title.json --train_batch_size 16 --predict_batch_size 144 --eval_period 500 --threads 80 --pad_question --max_question_length 0 --max_passage_length 240 --train_M 30 --test_M 5

For Large models:

dset={nq|tqa|trec|webq}
python main.py --do_train --output_dir ps.$dset.bbase --train_file paraphrase_selection_train.$dset.bbase.qp_mp.nopp.title.json --predict_file paraphrase_selection_dev.$dset.bbase.qp_mp.nopp.title.json --train_batch_size 16 --predict_batch_size 144 --eval_period 500 --threads 80 --pad_question --max_question_length 0 --max_passage_length 240 --train_M 10 --test_M 5 --bert_name bert-large-uncased

Note: If training on Trec or Webq, initialize the model with the model trained on NQ of the corresponding size by adding this parameter: --checkpoint $model_nq_{bbase|blarge}. You can either train this NQ model using the commands above, or directly download it as described below:

We also provide our pre-trained models for download, using this script:

python download_reconsider_models.py --model {nq|trec|tqa|webq}_{bbase|blarse}
  1. Predict on the test set using ReConsider Models
python main.py --do_predict --output_dir /tmp/ --predict_file paraphrase_selection_test.{nq|trec|webq|tqa}.{bbase|blarge}.qp_mp.nopp.title.json  --checkpoint {path_to_model} --predict_batch_size 72 --threads 80 --n_paragraphs 100  --verbose --prefix test_  --pad_question --max_question_length 0 --max_passage_length 240 --predict_batch_size 72 --test_M 5 --bert_name {bert-base-uncased|bert-large-uncased}
Owner
Facebook Research
Facebook Research
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022