The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Overview

Object-Placement-Assessment-Dataset-OPA

Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object placement. The foreground object should be placed at a reasonable location on the background considering location, size, occlusion, semantics, and etc.

Our dataset OPA is a synthesized dataset for Object Placement Assessment based on COCO dataset. We select unoccluded objects from multiple categories as our candidate foreground objects. The foreground objects are pasted on their compatible background images with random sizes and locations to form composite images, which are sent to human annotators for rationality labeling. Finally, we split the collected dataset into training set and test set, in which the background images and foreground objects have no overlap between training set and test set. We show some example positive and negative images in our dataset in the figure below.

Illustration of OPA dataset samples: Some positive and negative samples in our OPA dataset and the inserted foreground objects are marked with red outlines. Top row: positive samples; Bottom rows: negative samples, including objects with inappropriate size (e.g., f, g, h), without supporting force (e.g., i, j, k), appearing in the semantically unreasonable place (e.g., l, m, n), with unreasonable occlusion (e.g., o, p, q), and with inconsistent perspectives (e.g., r, s, t).

Our OPA dataset contains 62,074 training images and 11,396 test images, in which the foregrounds/backgrounds in training set and test set have no overlap. The training (resp., test) set contains 21,351 (resp.,3,566) positive samples and 40,724 (resp., 7,830) negative samples. Besides, the training (resp., test) set contains 2,701 (resp., 1,436) unrepeated foreground objects and1,236 (resp., 153) unrepeated background images. The OPA dataset is provided in Baidu Cloud (access code: qb1r) or Google Drive.

Prerequisites

  • Python

  • Pytorch

  • PIL

Getting Started

Installation

  • Clone this repo:

    git clone https://github.com/bcmi/Object-Placement-Assessment-Dataset-OPA.git
    cd Object-Placement-Assessment-Dataset-OPA
  • Download the OPA dataset. We show the file structure below:

    ├── background: 
         ├── category: 
                  ├── imgID.jpg
                  ├── ……
         ├── ……
    ├── foreground: 
         ├── category: 
                  ├── imgID.jpg
                  ├── mask_imgID.jpg
                  ├── ……
         ├── ……
    ├── composite: 
         ├── train_set: 
                  ├── fgimgID_bgimgID_x_y_w_h_scale_label.jpg
                  ├── mask_fgimgID_bgimgID_x_y_w_h_scale_label.jpg
                  ├── ……
         └── test_set: 
    ├── train_set.csv
    └── test_set.csv
    

    All backgrounds and foregrounds have their own IDs for identification. Each category of foregrounds and their compatible backgrounds are placed in one folder. The corresponding masks are placed in the same folder with a mask prefix.

    Four values are used to identify the location of a foreground in the background, including x y indicating the upper left corner of the foreground and w h indicating width and height. Scale is the maximum of fg_w/bg_w and fg_h/bg_h. The label (0 or 1) means whether the composite is reasonable in terms of the object placement.

    The training set and the test set each has a CSV file to record their information.

  • We also provide a script in /data_processing/ to generate composite images:

    python generate_composite.py
    

    After running the script, input the foreground ID, background ID, position, label, and storage path to generate your composite image.

Bibtex

If you find this work useful for your research, please cite our paper using the following BibTeX [arxiv]:

@article{liu2021OPA,
  title={OPA: Object Placement Assessment Dataset},
  author={Liu,Liu and Zhang,Bo and Li,Jiangtong and Niu,Li and Liu,Qingyang and Zhang,Liqing},
  journal={arXiv preprint arXiv:2107.01889},
  year={2021}
}
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022