The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

Overview

SSL models are Strong UDA learners

highlights

Introduction

This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners". It is based on pure PyTorch and presents the high effectiveness of SSL methods on UDA tasks. You can easily develop new algorithms, or readily apply existing algorithms. Codes for UDA methods and "UDA + SSL" are given in another project.

The currently supported algorithms include:

Semi-supervised learning for unsupervised domain adatation.
  • Semi-supervised learning by entropy minimization (Entropy Minimization, NIPS 2004)
  • Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks (Self-training, ICMLW 2013)
  • Temporal ensembling for semi-supervised learning (Pi-model, ICML 2017)
  • Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results (Mean-teacher, NIPS 2017)
  • Virtual adversarial training: a regularization method for supervised and semi-supervised learning (VAT, TPAMI 2018)
  • Mixmatch: A holistic approach to semi-supervised learning (MixMatch, NIPS 2019)
  • Unsupervised data augmentation for consistency training (UDA, NIPS 2020)
  • Fixmatch: Simplifying semi-supervised learning with consistency and confidence (FixMatch, NIPS 2020)

highlights

Installation

This implementation is based on the Transfer Learning Library. Please refer to 'requirements' for installation. Note that only "DistributedDataParallel" training is supported in the current branch.

Usage

We have examples in the directory examples. A typical usage is

# Train a FixMatch on Office-31 Amazon -> Webcam task using ResNet 50.
# Assume you have put the datasets under the path `args.datapath/office-31`, 
# or you are glad to download the datasets automatically from the Internet to this path. Please go to the dictionary ./examples, and run:
CUDA_VISIBLE_DEVICES=0,1,2,3 python ../main.py --use_ema --dist_url tcp://127.0.0.1:10013 --multiprocessing_distributed --regular_only_feature --p_cutoff 0.95 --seed 1  --epochs 30  --batchsize 32 --mu 7 --iters_per_epoch 250  --source A --target W  --method Fixmatch --save_dir ../log/Office31 --dataset Office31

In the directory examples, you can find all the necessary running scripts to reproduce the benchmarks with specified hyper-parameters. We don't provide the checkpoints since the training of each model is quick and there are too many tasks.

Contributing

Any pull requests or issues are welcome. Models of other SSL methods on UDA tasks are highly expected.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@inproceedings{SSL2UDA,
  author = {xxx},
  title = {Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners},
  year = {2021},
  publisher = {xxx},
  journal = {xxx},
}

Acknowledgment

We would like to thank Transfer Learning Library for their excellent contribution.

License

MIT License, the same to Transfer Learning Library.

Owner
Yabin Zhang
Yabin Zhang
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022