Author Disambiguation using Knowledge Graph Embeddings with Literals

Related tags

Deep Learningand-kge
Overview

Author Name Disambiguation with Knowledge Graph Embeddings using Literals

This is the repository for the master thesis project on Knowledge Graph Embeddings for Author Name Disambiguation presented by Cristian Santini at Digital Humanities and Digital Knowledge - University of Bologna, with the collaboration of Information Service Engineering - FIZ Karlsruhe, in a.y. 2020/2021.

Datasets

This repository contains notebooks and scripts used for a research on Author Name Disambiguation using Knowledge Graph Embeddings (KGEs) with literals. Due to the unavailability of an established benchmark for evaluating our approach, we extracted two Knowledge Graphs (KGs) from the following publicly available resources: 1) a triplestore available on Zenodo [1] covering information about the journal Scientometrics and modelled according to the OpenCitations Data Model and 2) a publicly available benchmark for author disambiguation available at this link by AMiner.
The Knowledge Graphs extracted are available on Zenodo as OpenCitations-782K [2] and AMiner-534K [3]. Each dataset is organized as a collection of RDF triples stored in TSV format. Literal triples are stored separately in order to train multimodal Knowledge Graph Embedding models.
Each dataset contains a JSON file called and_eval.json which contains a list of publications in the scholarly KGs labelled for evaluating AND algorithms. For the evaluation, while for AMiner-534K the set of publications was already manually annotated by a team of experts, for OC-782K we used the ORCID iDs associated with the authors in the triplestore in order to create an evaluation dataset.

PyKEEN extension

The pykeen-extension directory contains extension files compatible with PyKEEN (Release: v1.4.0.). In this directory we implemented some extensions of the LiteralE model [4] which allow to train multimodal knowledge graph embeddings by also using textual information contained in entity descriptions. Details about the models and on how to install the extension files are available in this README.md file.
The extended library provides an implementation of the following models:

  • DistMultText: an extension of the DistMult model [5] for training KGEs by using entity descriptions attached to entities.
  • ComplExText: an extension of the ComplEx model [6] which allows to train KGEs by using information coming from short text descriptions attached to entities.
  • DistMult_gate_text: an extension of the DistMult model which allows to train KGEs by using information coming from short text descriptions and numeric value associated with entities in KGs.
    Entity descriptions are encoded by using SPECTER [7], a BERT language model for scientific documents.

Code

Scripts used in our research are available in the src directory. The disambiguation.py file in the src/disambiguation folder contains the functions that we developed for carrying author name disambiguation by using knowledge graph embeddings. More specifically it contains:

  • the do_blocking() function, which is used to preliminarily group the authors in the KG into different sub-sets by means of their last name and first initial,
  • the cluster_KGEs() function, which takes as input the output of the do_blocking function and disambiguates the authors by means of Knowledge Graph Embeddings and Hierarchical Agglomerative Clustering.
  • the evaluation functions that we used in our experiments. The src folder also contains the various scripts used for extracting the scholarly KGs from the original sources and creating an evaluation dataset for AND.

Results

Knowledge Graph Embedding Evaluation

For evaluating the quality of our KGE models in representing the components of the studied KGs, OpenCitations-782K and AMiner-534K, we used entity prediction, one of the most common KG-completion tasks. In our experiments, we compared three architectures:

  • A DistMult model trained with only structural triples, i.e. triples connecting just two entities.
  • A DistMultText model which was trained by using titles of scholarly resources, i.e. journals and publications, along with structural triples.
  • A DistMult_gate_text model which was trained using titles and publication dates of scholarly resources in order to leverage the representations of the entities associated with them.
    Hyper-parameters were obtained by doing hyper-parameter optimization with PyKEEN. Details about the configuration files are available in the kge-evaluation folder.

The following table shows the results of our experiments for OC-782K.

Model MR MRR [email protected] [email protected] [email protected] [email protected]
DistMult 59901 0.3570 0.3157 0.3812 0.402 0.4267
DistMultText 60495 0.3568 0.3158 0.3809 0.4013 0.4252
DistMult_gate_text 61812 0.3534 0.3130 0.3767 0.3971 0.4218

The following table shows the results of our experiments for AMiner-534K.

Model MR MRR [email protected] [email protected] [email protected] [email protected]
DistMult 3585 0.3285 0.1938 0.3996 0.4911 0.5940
DistMultText 3474 0.3443 0.2139 0.4123 0.5014 0.6019
DistMult_gate_text 3560 0.3452 0.2163 0.4123 0.5009 0.6028

Author Name Disambiguation

We compared our architecture for Author Name Disambiguation (AND) for KGs with a simple Rule-based method inspired by Caron and Van Eck [8] on OC-782K and with other state-of-the-art graph embedding models on the AMiner benchmark (results taken from [9]). The results are reported below.

Model Precision Recall F1
Caron & Van Eck [8] 84.66 50.20 63.03
DistMult 91.71 67.11 77.50
DistMultText 89.63 66.98 76.67
DistMult_gate_text 82.76 67.59 74.40

Model Precision Recall F1
Zhang and Al Hasan [10] 70.63 59.53 62.81
Zhang et Al. [9] 77.96 63.03 67.79
DistMult 78.36 59.68 63.36
DistMultText 77.24 61.21 64.18
DistMult_gate_text 77.62 59.91 63.07

References

[1] Massari, Arcangelo. (2021). Bibliographic dataset based on Scientometrics, containing provenance information compliant with the OpenCitations Data Model and non disambigued authors (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5151264

[2] Santini, Cristian, Alam, Mehwish, Gesese, Genet Asefa, Peroni, Silvio, Gangemi, Aldo, & Sack, Harald. (2021). OC-782K: Knowledge Graph of "Scientometrics" modelled according to the OpenCitations Data Model [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5675787

[3] Santini, Cristian, Alam, Mehwish, Gesese. Genet Asefa, Peroni, Silvio, Gangemi, Aldo, & Sack, Harald. (2021). AMiner-534K: Knowledge Graph of AMiner benchmark for Author Name Disambiguation [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5675801

[4] Kristiadi A., Khan M.A., Lukovnikov D., Lehmann J., Fischer A. (2019) Incorporating Literals into Knowledge Graph Embeddings. In: Ghidini C. et al. (eds) The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science, vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_20.

[5] Yang, B., Yih, W., He, X., Gao, J., & Deng, L. (2015). Embedding Entities and Relations for Learning and Inference in Knowledge Bases. ArXiv:1412.6575 [Cs]. http://arxiv.org/abs/1412.6575

[6] Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., & Bouchard, G. (2016). Complex Embeddings for Simple Link Prediction. ArXiv:1606.06357 [Cs, Stat]. http://arxiv.org/abs/1606.06357

[7] Cohan, A., Feldman, S., Beltagy, I., Downey, D., & Weld, D. S. (2020). SPECTER: Document-level Representation Learning using Citation-informed Transformers. ArXiv:2004.07180 [Cs]. http://arxiv.org/abs/2004.07180

[8] Caron, E., & van Eck, N.-J. (2014). Large scale author name disambiguation using rule-based scoring and clustering: International conference on science and technology indicators. Proceedings of the Science and Technology Indicators Conference 2014, 79–86. http://sti2014.cwts.nl

[9] Zhang, Y., Zhang, F., Yao, P., & Tang, J. (2018). Name Disambiguation in AMiner: Clustering, Maintenance, and Human in the Loop. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1002–1011. https://doi.org/10.1145/3219819.3219859

[10] Zhang, B., & Al Hasan, M. (2017). Name Disambiguation in Anonymized Graphs using Network Embedding. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 1239–1248. https://doi.org/10.1145/3132847.3132873

Acknowledgments

The software and data here available are the result of a master thesis carried in collaboration between the FICLIT department of the University of Bologna and the research department FIZ - Information Service Engineering (ISE) of the Karlsruhe Institute of Technology (KIT). The thesis has been supervised by Prof. Aldo Gangemi and Prof. Silvio Peroni from the University of Bologna, and Prof. Harald Sack, Dr. Mehwish Alam and Genet Asefa Gesese from FIZ-ISE.

Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023