On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

Related tags

Deep LearningPTvsBT
Overview

PTvsBT

On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021)

Citation

Please cite as:

@inproceedings{liu-etal-2021-complementarity-pre,
    title = "On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation",
    author = "Liu, Xuebo  and
      Wang, Longyue  and
      Wong, Derek F.  and
      Ding, Liang  and
      Chao, Lidia S.  and
      Shi, Shuming  and
      Tu, Zhaopeng",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-emnlp.247",
    pages = "2900--2907",
    abstract = "Pre-training (PT) and back-translation (BT) are two simple and powerful methods to utilize monolingual data for improving the model performance of neural machine translation (NMT). This paper takes the first step to investigate the complementarity between PT and BT. We introduce two probing tasks for PT and BT respectively and find that PT mainly contributes to the encoder module while BT brings more benefits to the decoder. Experimental results show that PT and BT are nicely complementary to each other, establishing state-of-the-art performances on the WMT16 English-Romanian and English-Russian benchmarks. Through extensive analyses on sentence originality and word frequency, we also demonstrate that combining Tagged BT with PT is more helpful to their complementarity, leading to better translation quality. Source code is freely available at https://github.com/SunbowLiu/PTvsBT.",
}

Requirements and Installation

This implementation is based on fairseq(v0.10.2)

  • PyTorch version >= 1.5.0
  • Python version >= 3.6
git clone https://github.com/SunbowLiu/PTvsBT
cd PTvsBT
git -C scripts clone https://github.com/moses-smt/mosesdecoder --depth 1
git -C scripts clone https://github.com/rsennrich/wmt16-scripts.git
git clone --branch v0.10.2 https://github.com/pytorch/fairseq.git
cd fairseq
pip install --editable .

Prepare pre-trained mBART and WMT16 Ro-En data from scratch with prepare.sh

sh prepare.sh

Train and test the model with run.sh

sh run.sh

We used 4*A100 GPUs (40GB). The batch size per step is 32k, i.e., max-tokens * update-freq * num-of-gpus = 32k.

Final Result

The model is expected to gain about 41.6 BLEU scores.

Owner
Sunbow Liu
Natural Language Processing, Machine Translation, Deep Learning
Sunbow Liu
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
πŸ… Top 5% in 제2회 μ—°κ΅¬κ°œλ°œνŠΉκ΅¬ 인곡지λŠ₯ κ²½μ§„λŒ€νšŒ AI SPARK μ±Œλ¦°μ§€

AI_SPARK_CHALLENG_Object_Detection 제2회 μ—°κ΅¬κ°œλ°œνŠΉκ΅¬ 인곡지λŠ₯ κ²½μ§„λŒ€νšŒ AI SPARK μ±Œλ¦°μ§€ πŸ… Top 5% in mAP(0.75) (443λͺ… 쀑 13λ“±, mAP: 0.98116) λŒ€νšŒ μ„€λͺ… Edge ν™˜κ²½μ—μ„œμ˜ κ°€μΆ• Object Dete

3 Sep 19, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Disease Informed Neural Networks (DINNs) β€” neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) β€” neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo πŸ‘‹ , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022