Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

Related tags

Deep LearningPPGS
Overview

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces

PPGS Overview

Environment Setup

  • We recommend pipenv for creating and managing virtual environments (dependencies for other environment managers can be found in Pipfile)
git clone https://github.com/martius-lab/PPGS
cd ppgs
pipenv install
pipenv shell
  • For simplicity, this codebase is ready for training on two of the three environments (IceSlider and DigitJump). They are part of the puzzlegen package, which we provide here, and can be simply installed with
pip install -e https://github.com/martius-lab/puzzlegen
  • Offline datasets can be generated for training and validation. In the case of IceSlider we can use
python -m puzzlegen.extract_trajectories --record-dir /path/to/train_data --env-name ice_slider --start-level 0 --number-levels 1000 --max-steps 20 --n-repeat 20 --random 1
python -m puzzlegen.extract_trajectories --record-dir /path/to/test_data --env-name ice_slider --start-level 1000 --number-levels 1000 --max-steps 20 --n-repeat 5 --random 1
  • Finally, we can add the paths to the extracted datasets in default_params.json as data_params.train_path and data_params.test_path. We should also set the name of the environment for validation in data_params.env_name ("ice_slider" for IceSlider or "digit_jump" for DigitJump).

  • Training and evaluation are performed sequentially by running

python main.py

Configuration

All settings can be handled by editing default_config.json.

Param Default Info
optimizer_params.eps 1e-05 epsilon for Adam
train_params.seed null seed for training
train_params.epochs 40 # of training epochs
train_params.batch_size 128 batch size for training
train_params.save_every_n_epochs 5 how often to save models
train_params.val_every_n_epochs 2 how often to perform validation
train_params.lr_dict - dictionary of learning rates for each component
train_params.loss_weight_dict - dictionary of weights for the three loss functions
train_params.margin 0.1 latent margin epsilon
train_params.hinge_params - hyperparameters for margin loss
train_params.schedule [] learning rate schedule
model_params.name 'ppgs' name of the model to train in ['ppgs', 'latent']
model_params.load_model true whether to load saved model if present
model_params.filters [64, 128, 256, 512] encoder filters
model_params.embedding_size 16 dimensionality of latent space
model_params.normalize true whether to normalize embeddings
model_params.forward_layers 3 layers in MLP forward model for 'latent' world model
model_params.forward_units 256 units in MLP forward model for 'latent' world model
model_params.forward_ln true layer normalization in MLP forward model for 'latent' world model
model_params.inverse_layers 1 layers in MLP inverse model
model_params.inverse_units 32 units in MLP inverse model
model_params.inverse_ln true layer normalization in MLP inverse model
data_params.train_path '' path to training dataset
data_params.test_path '' path to validation dataset
data_params.env_name 'ice_slider' name of environment ('ice_slider' for IceSlider, 'digit_jump' for DigitJump
data_params.seq_len 2 number of steps for multi-step loss
data_params.shuffle true whether to shuffle datasets
data_params.normalize true whether to normalize observations
data_params.encode_position false enables positional encoding
data_params.env_params {} params to pass to environment
eval_params.evaluate_losses true whether to compute evaluation losses
eval_params.evaluate_rollouts true whether to compute solution rates
eval_params.eval_at [1,3,4] # of steps to evaluate at
eval_params.latent_eval_at [1,5,10] K for latent metrics
eval_params.seeds [2000] starting seed for evaluation levels
eval_params.num_levels 100 # evaluation levels
eval_params.batch_size 128 batch size for latent metrics evaluation
eval_params.planner_params.batch_size 256 cutoff for graph search
eval_params.planner_params.margin 0.1 latent margin for reidentification
eval_params.planner_params.early_stop true whether to stop when goal is found
eval_params.planner_params.backtrack false enables backtracking algorithm
eval_params.planner_params.penalize_visited false penalizes visited vertices in graph search
eval_params.planner_params.eps 0 enables epsilon greedy action selection
eval_params.planner_params.max_steps 256 maximal solution length
eval_params.planner_params.replan horizon 10 T_max for full planner
eval_params.planner_params.snap false snaps new vertices to visited ones
working_dir "results/ppgs" directory for checkpoints and results
Owner
Autonomous Learning Group
Autonomous Learning Group
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023