Blind Video Temporal Consistency via Deep Video Prior

Overview

deep-video-prior (DVP)

Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior

PyTorch implementation | paper | project website

Introduction

Our method is a general framework to improve the temporal consistency of video processed by image algorithms. For example, combining image colorization or image dehazing algorithm with our framework, we can achieve the goal of video colorization or video dehazing.

Dependencey

Environment

This code is based on tensorflow. It has been tested on Ubuntu 18.04 LTS.

Anaconda is recommended: Ubuntu 18.04 | Ubuntu 16.04

After installing Anaconda, you can setup the environment simply by

conda env create -f environment.yml
conda activate deep-video-prior

Download VGG model

cd deep-video-prior
python download_VGG.py
unzip VGG_Model.zip

Inference

Demo

bash test.sh

The results are placed in ./result

Use your own data

For the video with unimodal inconsistency:

python dvp_video_consistency.py --input PATH_TO_YOUR_INPUT_FOLDER --processed PATH_TO_YOUR_PROCESSED_FOLDER --task NAME_OF_YOUR_MODEL  --output ./result/OWN_DATA

For the video with multimodal inconsistency:

python dvp_video_consistency.py --input PATH_TO_YOUR_INPUT_FOLDER --processed PATH_TO_YOUR_PROCESSED_FOLDER --task NAME_OF_YOUR_MODEL --with_IRT 1 --IRT_initialization 1 --output ./result/OWN_DATA

Other information

  -h, --help            show this help message and exit
  --task TASK           Name of task
  --input INPUT         Dir of input video
  --processed PROCESSED
                        Dir of processed video
  --output OUTPUT       Dir of output video
  --use_gpu USE_GPU     Use gpu or not
  --loss {perceptual,l1,l2}
                        Chooses which loss to use. perceptual, l1, l2
  --network {unet}      Chooses which model to use. unet, fcn
  --coarse_to_fine_speedup COARSE_TO_FINE_SPEEDUP
                        Use coarse_to_fine_speedup for training
  --with_IRT WITH_IRT   Sse IRT or not, set this to 1 if you want to solve
                        multimodal inconsistency
  --IRT_initialization IRT_INITIALIZATION
                        Sse initialization for IRT
  --large_video LARGE_VIDEO
                        Set this to 1 when the number of video frames are
                        large, e.g., more than 1000 frames
  --save_freq SAVE_FREQ
                        Save frequency of epochs
  --max_epoch MAX_EPOCH
                        The max number of epochs for training
  --format FORMAT       Format of output image

Citation

If you find this work useful for your research, please cite:

@inproceedings{lei2020dvp,
  title={Blind Video Temporal Consistency via Deep Video Prior},
  author={Lei, Chenyang and Xing, Yazhou and Chen, Qifeng},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}                

Contact

Please contact me if there is any question (Chenyang Lei, [email protected])

Beyond the tasks we evaluated

Researcher found that Blind Temporal Consistency (e.g., DVP) can be applied to many more tasks!

Owner
Chenyang LEI
CS Ph.D. student at HKUST
Chenyang LEI
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023