A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

Overview

europilot

Overview

Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms.

alt tag alt tag

A convolutional neural network (CNN) controls the steering wheel inside ETS2.

Think of europilot as a bridge between the game environment, and your favorite deep-learning framework, such as Keras or Tensorflow. With europilot, you can capture the game screen input, and programmatically control the truck inside the simulator.

Europilot can be used in one of two ways: training or testing.

For training, europilot can capture the screen input and output a numpy array in realtime, while simultaenously getting the wheel-joystick values. The mapping between the relevant screenshot and the joystick values is written inside a csv file.

In the csv file, each row has the screenshot filename with the joystick values.

For testing, europilot can create a virtual joystick driver that can be recognized inside the game, which can be used to programmatically control the truck. Using this joystick, you can create a real-time inference network that uses the game screen as the input, and outputs the relevant joystick commands, such as steering.

Click to see an example demo on YouTube.

Click to read a blog post on our motivation behind the project.

Getting Started

First, clone the project

git clone [email protected]:marshq/europilot.git

If you want to install europilot locally,

python setup.py install

You can also install prerequisite libraries and do something directly in this project path.

pip install -r requirements.txt
python
>>> import europilot
>>> europilot.__version__
'0.0.1'

To start generating training data, check out generate_training_data.py in the scripts directory.

NOTE that opencv compiled with opencv_contrib module is required to use screen selection gui.

Otherwise, you should specify a screen area in which will be captured by assigning custom Box object to train.Config.BOX.

After the generation of training data is finished, you may want to manually inspect each image to check if unwanted data was recorded. Check clean_up.ipynb for a simple script to remove unwanted data together with the accompanying row in the csv file. Also check out preprocess.ipynb and get_mean_std.ipynb for an example code to preprocess the data.

PilotNet.ipynb is an implementation of Mariusz Bojarski's End to End Learning for Self-Driving Cars, with slight differences. The demo shown above was created with the following notebook.

For running inference on the model, check out inference.ipynb in the scripts directory.

Sample Training Data

For those interested, a driving dataset consisting of 162,495 images is available here (17G).

General Architecture

Europilot hides the complexity of capturing the screen data and joystick data with a simplified interface. Internally, the joystick datastream is parsed into a machine readable format, which for us was a Logitech G27. If you have a different joystick, modify joystick.py to your needs.

We currently have example notebooks implemented with Keras. We hope to add more examples in other popular frameworks.

A virtual joystick driver is implemented by attaching userspace drivers in the kernel, by outputting events into udev. This driver can be recognized inside ETS2. Please note that the driver must be initialized before the game is started, or else it will not show up in the controller page.

Why Euro Truck Simulator 2?

Europilot captures the screen input, therefore technically it is game agnostic. We chose ETS2 as our first target for several reasons.

  • Multi platform support: ETS2 supports Windows, OS X, and Linux. Developers can run the game in a Macbook, or in a Ubuntu workstation. This put ETS2 ahead of games such as GTAV.

  • Realistic graphics/physics: We looked at open source games, but found that the graphics or physics engine was not realistic enough for our use case. ETS2 afterall, has "simulator" inside its title.

  • Fun: Having a large dataset is critical to developing a good model. Therefore you, as a developer, have to play many hours of whatever game you target. Fortunately, ETS2 is fun to play!

Documentation

For now, refer to the README and the source code.

Compatibility

Europilot runs on linux. It supports python 2.6-2.7 and 3.3+.

How to Contribute

Any contribution regarding new feature, bug fix and documentation is welcomed.

But we highly recommend you to read this guideline before you make a pull request.

Coding convention

We generally follow PEP8 with few additional conventions.

  • Line-length can exceed 79 characters, to 100 in case of comments.
  • Always use single-quoted strings, unless a single-quote occurs within the string.
  • Docstrings use double-quote.

Roadmap

Feature roadmap includes

  • Run ETS2 on virtual machine and train/test a model remotely
  • Web leaderboard
  • Capture custom(ex. left, right side cam) vision data while driving in ETS2
  • Support reinforcement learning workflow which is simliar to openai universe
  • Windows support, if there is demand.

License

This project is licensed under the MIT License.

Owner
We are bringing self-driving technology to the commercial trucking industry.
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
MohammadReza Sharifi 27 Dec 13, 2022
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022