Code for Temporally Abstract Partial Models

Overview

Code for Temporally Abstract Partial Models

Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetarpal, Ahmed, Comanici and Precup, 2021 that is to be published at NeurIPS 2021.

Installation

  1. Clone the deepmind-research repository and cd into this directory:
git clone https://github.com/deepmind/affordances_option_models.git
  1. Now install the requirements to your system pip install -r ./requirements.txt. It is recommended to use a virtualenv to isolate dependencies.

For example:

git clone https://github.com/deepmind/affordances_option_models.git

python3 -m virtualenv affordances
source affordances/bin/activate

pip install -r affordances_option_models/requirements.txt

Usage

  1. The first step of the experiment is to build, train and save the low level options: python3 -m affordances_option_models.lp_learn_options --save_path ./options which will save the option policies into ./options/args/.... The low level options are trained by creating a reward matrix for the 75 options (see option_utils.check_option_termination) and then running value iteration.
  2. The next step is to learn the option models, policy over options and affordance models all online: python3 -m affordances_option_models.lp_learn_model_from_options --path_to_options=./options/gamma0.99/max_iterations1000/options/. See Arguments below to see how to select --affordances_name.

Arguments

  1. The default arguments for lp_learn_options.py will produce a reasonable set of option policies.
  2. For lp_learn_model_from_options.py use the argument --affordances_name to switch between the affordance that will be used for model learning. For the heuristic affordances (everything, only_pickup_drop and only_relevant_pickup_drop) the model learned will be evaluated via value iteration (i.e. planning) with every other affordance type. For the learned affordances, only learned affordances will be used in value iteration.

Experiments in Section 5.1

To reproduce the experiments with heuristics use the command

python3 -m affordances_option_models.lp_learn_model_from_options  \
--num_rollout_nodes=1 --total_steps=50000000 \
--seed=0 --affordances_name=everything

and run this command for every combination of the arguments:

  • --seed=: 0, 1, 2, 3
  • --affordances_name=: everything, only_pickup_drop, only_relevant_pickup_drop.

Experiments in Section 5.2

To reproduce the experiments with learned affordances use the command

python3 -m affordances_option_models.lp_learn_model_from_options  \
--num_rollout_nodes=1 --total_steps=50000000 --affordances_name=learned \
--seed=0 --affordances_threshold=0.0

and run this command for every combination of the arguments:

  • --seed=: 0, 1, 2, 3
  • --affordances_threshold=: 0.0, 0.1, 0.25, 0.5, 0.75.

Citation

If you use this codebase in your research, please cite the paper:

@misc{khetarpal2021temporally,
      title={Temporally Abstract Partial Models},
      author={Khimya Khetarpal and Zafarali Ahmed and Gheorghe Comanici and Doina Precup},
      year={2021},
      eprint={2108.03213},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Disclaimer

This is not an official Google product.

Owner
DeepMind
DeepMind
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022