SARS-Cov-2 Recombinant Finder for fasta sequences

Overview

Sc2rf - SARS-Cov-2 Recombinant Finder

Pronounced: Scarf

What's this?

Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new virus lineages that have (partial) genes from more than one parent lineage.

Is it already usable?

This is a very young project, started on March 5th, 2022. As such, proceed with care. Results may be wrong or misleading, and with every update, anything can still change a lot.

Anyway, I'm happy that scientists are already seeing benefits from Sc2rf and using it to prepare lineage proposals for cov-lineages/pango-designation.

Though I already have a lot of ideas and plans for Sc2rf (see at the bottom of this document), I'm very open for suggestions and feature requests. Please write an issue, start a discussion or get in touch via mail or twitter!

Example output

Screenshot of the terminal output of Sc2rf

Requirements and Installation

You need at least Python 3.6 and you need to install the requirements first. You might use something like python3 -m pip install -r requirements.txt to do that. There's a setup.py which you should probably ignore, since it's work in progress and does not work as intented yet.

Also, you need a terminal which supports ANSI control sequences to display colored text. On Linux, MacOS, etc. it should probably work.

On Windows, color support is tricky. On a recent version of Windows 10, it should work, but if it doesn't, install Windows Terminal from GitHub or Microsoft Store and run it from there.

Basic Usage

Start with a .fasta file with one or more sequences which might contain recombinants. Your sequences have to be aligned to the reference.fasta. If they are not, you will get an error message like:

Sequence hCoV-19/Phantasialand/EFWEFWD not properly aligned, length is 29718 instead of 29903.

(For historical reasons, I always used Nextclade to get aligned sequences, but you might also use Nextalign or any other tool. Installing them is easy on Linux or MacOS, but not on Windows. You can also use a web-based tool like MAFFT.)

Then call:

sc2rf.py <your_filename.fasta>

If you just need some fasta files for testing, you can search the pango-lineage proposals for recombinant issues with fasta-files, or take some files from my shared-sequences repository, which might not contain any actual recombinants, but hundreds of sequences that look like they were!

No output / some sequences not shown

By default, a lot filters are active to show only the likely recombinants, so that you can input 10000s of sequences and just get output for the interesting ones. If you want, you can disable all filters like that, which is only recommended for small input files with less than 100 sequences:

sc2rf.py --parents 1-35 --breakpoints 0-100 \
--unique 1 --max-ambiguous 10000 <your_filename.fasta>

or even

sc2rf.py --parents 1-35 --breakpoints 0-100 \
--unique 1 --max-ambiguous 10000 --force-all-parents \
--clades all <your_filename.fasta>

The meaning of these parameters is described below.

Advanced Usage

You can execute sc2rf.py -h to get excactly this help message:

usage: sc2rf.py [-h] [--primers [PRIMER ...]]
                [--primer-intervals [INTERVAL ...]]
                [--parents INTERVAL] [--breakpoints INTERVAL]
                [--clades [CLADES ...]] [--unique NUM]
                [--max-intermission-length NUM]
                [--max-intermission-count NUM]
                [--max-name-length NUM] [--max-ambiguous NUM]
                [--force-all-parents]
                [--select-sequences INTERVAL]
                [--enable-deletions] [--show-private-mutations]
                [--rebuild-examples] [--mutation-threshold NUM]
                [--add-spaces [NUM]] [--sort-by-id [NUM]]
                [--verbose] [--ansi] [--hide-progress]
                [--csvfile CSVFILE]
                [input ...]

Analyse SARS-CoV-2 sequences for potential, unknown recombinant
variants.

positional arguments:
  input                 input sequence(s) to test, as aligned
                        .fasta file(s) (default: None)

optional arguments:
  -h, --help            show this help message and exit

  --primers [PRIMER ...]
                        Filenames of primer set(s) to visualize.
                        The .bed formats for ARTIC and EasySeq
                        are recognized and supported. (default:
                        None)

  --primer-intervals [INTERVAL ...]
                        Coordinate intervals in which to
                        visualize primers. (default: None)

  --parents INTERVAL, -p INTERVAL
                        Allowed number of potential parents of a
                        recombinant. (default: 2-4)

  --breakpoints INTERVAL, -b INTERVAL
                        Allowed number of breakpoints in a
                        recombinant. (default: 1-4)

  --clades [CLADES ...], -c [CLADES ...]
                        List of variants which are considered as
                        potential parents. Use Nextstrain clades
                        (like "21B"), or Pango Lineages (like
                        "B.1.617.1") or both. Also accepts "all".
                        (default: ['20I', '20H', '20J', '21I',
                        '21J', 'BA.1', 'BA.2', 'BA.3'])

  --unique NUM, -u NUM  Minimum of substitutions in a sample
                        which are unique to a potential parent
                        clade, so that the clade will be
                        considered. (default: 2)

  --max-intermission-length NUM, -l NUM
                        The maximum length of an intermission in
                        consecutive substitutions. Intermissions
                        are stretches to be ignored when counting
                        breakpoints. (default: 2)

  --max-intermission-count NUM, -i NUM
                        The maximum number of intermissions which
                        will be ignored. Surplus intermissions
                        count towards the number of breakpoints.
                        (default: 8)

  --max-name-length NUM, -n NUM
                        Only show up to NUM characters of sample
                        names. (default: 30)

  --max-ambiguous NUM, -a NUM
                        Maximum number of ambiguous nucs in a
                        sample before it gets ignored. (default:
                        50)

  --force-all-parents, -f
                        Force to consider all clades as potential
                        parents for all sequences. Only useful
                        for debugging.

  --select-sequences INTERVAL, -s INTERVAL
                        Use only a specific range of input
                        sequences. DOES NOT YET WORK WITH
                        MULTIPLE INPUT FILES. (default: 0-999999)

  --enable-deletions, -d
                        Include deletions in lineage comparision.

  --show-private-mutations
                        Display mutations which are not in any of
                        the potential parental clades.

  --rebuild-examples, -r
                        Rebuild the mutations in examples by
                        querying cov-spectrum.org.

  --mutation-threshold NUM, -t NUM
                        Consider mutations with a prevalence of
                        at least NUM as mandatory for a clade
                        (range 0.05 - 1.0, default: 0.75).

  --add-spaces [NUM]    Add spaces between every N colums, which
                        makes it easier to keep your eye at a
                        fixed place. (default without flag: 0,
                        default with flag: 5)

  --sort-by-id [NUM]    Sort the input sequences by the ID. If
                        you provide NUM, only the first NUM
                        characters are considered. Useful if this
                        correlates with meaning full meta
                        information, e.g. the sequencing lab.
                        (default without flag: 0, default with
                        flag: 999)

  --verbose, -v         Print some more information, mostly
                        useful for debugging.

  --ansi                Use only ASCII characters to be
                        compatible with ansilove.

  --hide-progress       Don't show progress bars during long
                        task.

  --csvfile CSVFILE     Path to write results in CSV format.
                        (default: None)

An Interval can be a single number ("3"), a closed interval
("2-5" ) or an open one ("4-" or "-7"). The limits are inclusive.
Only positive numbers are supported.

Interpreting the output

To be written...

There already is a short Twitter thread which explains the basics.

Source material attribution

  • virus_properties.json contains data from LAPIS / cov-spectrum which uses data from NCBI GenBank, prepared and hosted by Nextstrain, see blog post.
  • reference.fasta is taken from Nextstrain's nextclade_data, see NCBI for attribution.
  • mapping.csv is a modified version of the table on the covariants homepage by Nextstrain.
  • Example output / screenshot based on Sequences published by the German Robert-Koch-Institut.
  • Primers:
    • ARTIC primers CC-BY-4.0 by the ARTICnetwork project
    • EasySeq primers by Coolen, J. P., Wolters, F., Tostmann, A., van Groningen, L. F., Bleeker-Rovers, C. P., Tan, E. C., ... & Melchers, W. J. Removed until I understand the format if the .bed file. There will be an issue soon.
    • midnight primers CC-BY-4.0 by Silander, Olin K, Massey University

The initial version of this program was written in cooperation with @flauschzelle.

TODO / IDEAS / PLANS

  • Move these TODOs into actual issues
  • add disclaimer and link to pango-designation
  • provide a sample file (maybe both .fasta and .csv, as long as the csv step is still needed)
  • accept aligned fasta
    • as input file
    • as piped stream
  • If we still accept csv/ssv input, autodetect the delimiter either by file name or by analysing the first line
  • find a way to handle already designated recombinant lineages
  • Output structured results
    • csv
    • html?
    • fasta of all sequences that match the criteria, which enables efficient multi-pass strategies
  • filter sequences
    • by ID
    • by metadata
  • take metadata csv
  • document the output in README
  • check / fix --enabled-deletions
  • adjustable threshold for mutation prevalence
  • new color mode (with background color and monochrome text on top)
  • new bar mode (with colored lines beneath each sequence, one for each example sequence, and "intermissions" shown in the color of the "surrounding" lineage, but not as bright)
  • interactive mode, for filtering, reordering, etc.
  • sort sequences within each block
  • re-think this whole "intermission" concept
  • select a single sequence and let the tool refine the choice of parental sequences, not just focusing on commonly known lineages (going up and down in the tree)
  • use more common terms to describe things (needs feedback from people with actual experience in the field)
Owner
Lena Schimmel
Lena Schimmel
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
A simple editor for captions in .SRT file extension

WaySRT A simple editor for captions in .SRT file extension The program doesn't use any external dependecies, just run: python way_srt.py {file_name.sr

Gustavo Lopes 3 Nov 16, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022