Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

Overview

MAAD: A Model for Attended Awareness in Driving

Install // Datasets // Training // Experiments // Analysis // License

Official PyTorch implementation of MAAD: A Model and Dataset for "Attended Awareness" in Driving invented by the RAD Team at Toyota Research Institute (TRI) Deepak Gopinath, Guy Rosman, Simon Stent, Katsuya Terahata, Luke Fletcher, Brenna Argall, John Leonard.

MAAD affords estimation of attended awareness based on noisy gaze estimates and scene video over time. This learned model additionally affords saliency estimation and refinement of a noisy gaze signal. We demonstrate the performance of the model on a new, annotated dataset that explores the gaze and perceived attended awareness of subjects as they observe a variety of driving scenarios. In this dataset, we provide a surrogate annotated third person estimate of attended awareness as a reproducible supervisory cue.

Paper to be available on Arxiv soon!

Install

You need a machine with recent Nvidia drivers and a GPU with at least 16GB of memory (more for the bigger models at higher resolution). We recommend using conda to have a reproducible environment. To setup your environment, type in a terminal (only tested in Ubuntu 18.04 and PyTorch 1.7.0):

git clone https://github.com/ToyotaResearchInstitute/att-aware.git
cd att-aware
# if you want to use conda (recommended)
conda env create -f environment.pt170.yml
conda activate pt170

We will list below all commands as if run directly inside the conda environment. If you encounter out of memory issues, try a lower batch_size parameter in the args_file.py.

Datasets

All the datasets are assumed to be downloaded in ~/data/.

Videos

MAAD uses subset of videos (8 videos of urban driving) from th Dr(Eye)ve Dataset. The entire Dr(Eye)ve dataset can be downloaded at Dr(Eye)ve Full Dataset. We collected gaze and attended awareness annotation data on the videos [06, 07, 10, 11, 26, 35, 53, 60]. Each video folder should be located at ~/data/dreyeve/VIDEO_ID

Gaze Dataset

Our complete dataset comprises approximately 24.5 hours of gaze tracking data captured via multiple exposures from different subjects. We recruited 23 subjects (aged 20-55), who each watched a subset of video clips with their heads mounted in a chin-rest after a 9-point calibration procedure. Their primary task was to monitor the driving scene as a safety driver might monitor an autonomous vehicle. While not a perfect substitute for in-car driving data collection, this primary task allowed for the capture of many of the characteristics of attentive driving behavior. In order to explore the effect of the cognitive task difference (vs. in-car data) on the gaze and awareness estimates, subjects viewed the video under different cognitive task modifiers, as detailed in Section~\ref{sec:data:conditions} (data collected with non-null cognitive task modifiers comprise 30% of total captured gaze data). Around 45% of video stimuli were watched more than once, of which 11% (40 minutes) was observed by 16 or more subjects.

The gaze dataset will be made available as a pkl (all_videos_subjects_tasks_gaze_data.pkl) file. Each subjects' gaze data is stored as a pandas dataframe in the pkl file (organized according to video, subject and task id). The pkl file is expected to be located at ~/data/all_videos_subjects_tasks_gaze_data.pkl

Attended Awareness Annotation Dataset

Our complete attended awareness annotation dataset consists of 54019 third-party annotations of approximately 10s long videos from the Gaze Dataset. Annotators watched a video snippet where the subject's gaze was marked by two circles centered at the gaze point. One circle (green) size was set to the diameter of a person's central foveal vision area at the viewing distance. Another circle (red) was set to a diameter twice the foveal vision circle. At the end of the video snippet, a specific location was chosen and the annotators were asked whether they believe the subject has attended to that location on a scale between 1 and 5 (1-no, definitely not aware, 5-yes, definitely aware). Each annotation consists of the following fields:

video_id | query_frame | subject | cognitive_modifier | query_x | query_y | anno_is_aware | anno_is_object | anno_expected_awareness | anno_surprise_factor

Any field which starts with anno is the annotation. For more details refer to supplementary material of the paper. Datasets are assumed to be downloaded in ~/data/datasets/MAAD_ATT_AWARENESS_LABELS.csv (can be a symbolic link).

Both the gaze dataset and the annotation dataset are available as a zipped folder for download [here].

Optic Flow

MAAD uses optic flow of the videos as a side-channel information to perform temporal regularizations. For the purposes of our model, we utilized [RAFT: Recurrent All Pairs Field Transforms for Optical Flow] to generate optic flow. For each video in the dataset, the optic flow model has to be run all frame pairs N frames apart. The current code assumes that the optic flow generated is at half-resolution with a padding of 2 pixels (on each side) along the y direction. These parameters denoted as OPTIC_FLOW_SCALE_FACTOR, OPTIC_FLOW_H_PAD, OPTIC_FLOW_W_PAD can be altered in the att-aware/src/maad/utils/maad_consts.py file to suit your needs.

Optic flow is assumed to be cached as ~/maad_cache/optic_flow/VIDEO_ID/frame_N.npy

Segmentation Masks

MAAD uses segmentation masks for the videos in order to perform diffusivity-based spatial regularization. For the purposes of our model, we used MaskRCNN to generate the segmentation masks for each frame for each video.

Segmentation masks are assumed to be cached as ~/maad_cache/segmentations_from_video/VIDEO_ID/segmentations_frames/frame_N.png

During training, lower resolution mask images will be generated by resizing the full sized masks and will be cached back into the same location as frame_N_ar_{aspect_ratio_reduction_factor}.png.

Training

MAAD model training can be done using the train.py script. Run the following command to train a model using all 8 videos (split into a train and test sets) using the parameter settings used in the ICCV paper. python train.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp Default resolution used is 240 x 135. All training args are present in /att-aware/src/maad/config/args_file.py

Models will be saved at ~/maad/models/TRAINING_HASH_NAME

Experiments

Three different experiments are proposed for MAAD. All experiments are done using the test split. Gaze Denoising and Awareness Estimation uses the trained model for inference. Gaze Calibration experiment involves continued training to optimize the miscalibration transform. All experiment results are saved as jsons in ~/maad/results/

Gaze Denoising

MAAD can be used for denoising noisy gaze estimates by relying on saliency information. The denoising experiment script is located at att-aware/src/scripts/experiment_maad_denoising.py

The script can be run using the following command: python experiment_maad_denoising.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt --max_inference_num_batches 1000

Gaze Recalibration

MAAD can be used for recalibration of a miscalibrated gaze (due to errors in DMS). The calibration experiment script is located at att-aware/src/scripts/experiment_maad_calibration.py The calibration experiment script can be run using the follow command:

python experiment_maad_calibration_optimization.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt --dropout_ratio '{"driver_facing":0.0, "optic_flow":0.0}'

Note that, the above command assumes that the model used for recalibration was trained using the default cost parameters. It is important that the cost coefficients match the original values. Furthermore, the dropout_ratio for driver_facing gaze module should be set at 0.0 so that gaze is available as a side-channel input to the network at all times. The miscalibration noise levels can be specified using the miscalibration_noise_levels argument.

Awareness Estimation

MAAD can used for attended awareness estimation based on scene context and an imperfect gaze information. The attended awareness estimation script is located at att-aware/src/scripts/experiment_maad_awareness_estimation.py

The attended awareness estimation script can be run using the following command: python experiment_maad_awareness_estimation.py --train_sequence_ids 6 7 10 11 26 35 53 60 --use_std_train_test_split --add_optic_flow --use_s3d --enable_amp --load_indices_dict_path ~/maad/logs/TRAINING_HASH/TRAINING_HASH/indices_dict_folder/indices_dict.pkl --load_model_path ~/maad/models/TRAINING_HASH/MODEL.pt

Analysis

We have also provided scripts to parse and compute statistics on the results outputted by the experiment scripts. These scripts are available at att-aware/src/scripts/parse_*_data.py where * could be denoising, calibration_optimization, awareness_estimation

The results of the parsing scripts will be outputted directly in the terminal. The parsing scripts can be run using the following commands. python parse_denoising_data.py --results_json_prefix ~/maad/results/GAZE_DENOISING. Assumes that the result of the denoising experiment is in GAZE_DENOISING.json

python parse_awareness_estimation_data.py --results_json_prefix ~/maad/results/AWARENESS_ESTIMATION. Assumes that the result of the awareness estimation experiment is in AWARENESS_ESTIMATION.json

The results of the calibration experiments are expected to stored in files with the following filename convention experiment_type_gaze_calibration_miscalibration_noise_level_NOISELEVEL_optimization_run_num_OPTIMIZATIONNUM_FILENAMEAPPEND.json, where NOISELEVEL is in the miscalibration_noise_levels argument in experiment_maad_calibration_optimization.py OPTIMIZATIONNUM goes from 0 to num_optimization_runs-1 and FILENAMEAPPEND is the filename_append argument in the experiment.

python parse_calibration_optimization_data.py --folder_containing_results FOLDER_CONTAINING_JSONS --num_optimization_runs (same val as used in the experiment) --miscalibration_noise_levels (same val as used in the experiment) --filename_append (same val as used in the experiment)

License

The source code is released under the MIT License

Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022