PaRT: Parallel Learning for Robust and Transparent AI

Related tags

Deep LearningPaRT
Overview

PaRT: Parallel Learning for Robust and Transparent AI

This repository contains the code for PaRT, an algorithm for training a base network on multiple tasks in parallel. The diagram of PaRT is shown in the figure below.

Below, we provide details regarding dependencies and the instructions for running the code for each experiment. We have prepared scripts for each experiment to help the user have a smooth experience.

Dependencies

  • python >= 3.8
  • pytorch >= 1.7
  • scikit-learn
  • torchvision
  • tensorboard
  • matplotlib
  • pillow
  • psutil
  • scipy
  • numpy
  • tqdm

SETUP ENVIRONMENT

To setup the conda env and create the required directories go to the scripts directory and run the following commands in the terminal:

conda init bash
bash -i setupEnv.sh

Check that the final output of these commands is:

Installed torch version {---}
Virtual environment was made successfully

CIFAR 100 EXPERIMENTS

Instructions to run the code for the CIFAR100 experiments:

--------------------- BASELINE EXPERIMENTS ---------------------

To run the baseline experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR100Baseline.sh ../../scripts/test_case0_cifar100_baseline.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar100_baseline.json to 1,2,3, or 4.

--------------------- PARALLEL EXPERIMENTS ---------------------

To run the parallel experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR100Parallel.sh ../../scripts/test_case0_cifar100_parallel.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar100_parallel.json to 1,2,3, or 4.

CIFAR 10 AND CIFAR 100 EXPERIMENTS

Instructions to run the code for the CIFAR10 and CIFAR100 experiments:

--------------------- BASELINE EXPERIMENTS ---------------------

To run the parallel experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR10_100Baseline.sh ../../scripts/test_case0_cifar10_100_baseline.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar10_100_baseline.json to 1,2,3, or 4.

--------------------- PARALLEL EXPERIMENTS ---------------------

To run the baseline experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i runCIFAR10_100Parallel.sh ../../scripts/test_case0_cifar10_100_parallel.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_cifar10_100_parallel.json to 1,2,3, or 4.

FIVETASKS EXPERIMENTS

The dataset for this experiment can be downloaded from the link provided by the CPG GitHub Page or Here. Instructions to run the code for the FiveTasks experiments:

--------------------- BASELINE EXPERIMENTS ---------------------

To run the baseline experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i run5TasksBaseline.sh ../../scripts/test_case0_5tasks_baseline.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_5tasks_baseline.json to 1,2,3, or 4.

--------------------- PARALLEL EXPERIMENTS ---------------------

To run the parallel experiments for the first seed, go to the scripts directory and run the following command in the terminal:

bash -i run5TasksParallel.sh ../../scripts/test_case0_5tasks_parallel.json

To run the experiment for other seeds, simply change the value of test_case in test_case0_5tasks_parallel.json to 1,2,3, or 4.

Paper

Please cite our paper:

Paknezhad, M., Rengarajan, H., Yuan, C., Suresh, S., Gupta, M., Ramasamy, S., Lee H. K., PaRT: Parallel Learning Towards Robust and Transparent AI, arXiv:2201.09534 (2022)

Owner
Mahsa
I develop DL, ML, computer vision, and image processing algorithms for problems in deep learning and medical domain.
Mahsa
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023