Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

Overview

PPO-BiHyb

This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

A Brief introduction

In this paper, we propose a general deep learning pipeline for combinatorial optimization problems on graphs. The neural network is learned with Proximal Policy Optimization (PPO), under our Bi-Level Hybrid optimization pipeline. Thus our method is called PPO-BiHyb. This section is aimed for a brief summary, and we recommend referring to our paper if you do not want to miss any details.

The family of existing machine learning for combinatorial optimization methods follow the following single-level pipeline: single-level optimization and the neural network is designed to lean the mapping from the input graph G to the decision variable X. It brings challenges like the sparse reward issue in RL training, and it also makes the model design non-trivial to ensure that it has enough model capacity to learn such a mapping.

In contrast, in this paper, we propose a bi-level optimization formulation: bi-level optimization where we introduce the optimized graph G'. The upper-level problem is to optimize G', and we design a PPO-based agent for this task; the lower-level optimization is to solve the optimization problem with G', and we resort to existing heuristic algorithms for this task.

The overview of our pipeline is summarized as follows overview

And Here is our implementation of the proposed framework on 3 problems: implement-on-3-problems

  • DAG scheduling problem models the computer resource scheduling problem in data centers, where the computer jobs are represented by Directed Acyclic Graphs (DAGs) and our aim is to minimize the makespan time to finish all jobs as soon as possible. This optimization problem is NP-hard.
  • Graph Edit Distance (GED) problem is a popular graph distance metric, and it is inherently an NP-hard combinatorial optimization problem whose aim is to minimize the graph edit cost between two graphs.
  • Hamiltonian Cycle Problem (HCP) arises from the famous 7 bridges problem by Euler: given a graph, decide whether exist a valid Hamiltonian cycle in this graph (i.e. a path that travels all nodes without visiting a node twice). This decision problem is NP-complete.

Experiment Results

DAG scheduling (objective & relative: smaller is better)

TPC-H-50 (#nodes=467.2) TPC-H-100 (#nodes=929.8) TPC-H-150 (#nodes=1384.5)
objective relative objective relative objective relative
shortest job first 12818 30.5% 19503 15.3% 27409 12.2%
tetris scheduling 12113 23.3% 18291 8.1% 25325 3.7%
critical path 9821 0.0% 16914 0.0% 24429 0.0%
PPO-Single 10578 7.7% 17282 2.2% 24822 1.6%
Random-BiHyb 9270 -5.6% 15580 -7.9% 22930 -6.1%
PPO-BiHyb (ours) 8906 -9.3% 15193 -10.2% 22371 -8.4%

GED (objective & relative: smaller is better)

AIDS-20/30 (#nodes=22.6) AIDS-30/50 (#nodes=37.9) AIDS-50+ (#nodes=59.6)
objective relative objective relative objective relative
Hungarian 72.9 94.9% 153.4 117.9% 225.6 121.4%
RRWM 72.1 92.8% 139.8 98.6% 214.6 110.6%
Hungarian-Search 44.6 19.3% 103.9 47.6% 143.8 41.1%
IPFP 37.4 0.0% 70.4 0.0% 101.9 0.0%
PPO-Single 56.5 51.1% 110.0 56.3% 183.9 80.5%
Random-BiHyb 33.1 -11.5% 66.0 -6.3% 82.4 -19.1%
PPO-BiHyb (ours) 29.1 -22.2% 61.1 -13.2% 77.0 -24.4%

HCP (TSP objective: smaller is better, found cycles: larger is better)

FHCP-500/600 (#nodes=535.1)
TSP objective found cycles
Nearest Neighbor 79.6 0%
Farthest Insertion 133.0 0%
LKH3-fast 13.8 0%
LKH3-accu 6.3 20%
PPO-Single 9.5 0%
Random-BiHyb 10.0 0%
PPO-BiHyb (ours) 6.7 25%

Environment set up

This code is developed and tested on Ubuntu 16.04 with Python 3.6.9, Pytorch 1.7.1, CUDA 10.1.

Install required pacakges:

export TORCH=1.7.0
export CUDA=cu101
pip install torch==1.7.1+${CUDA} torchvision==0.8.2+${CUDA} torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install --no-index --upgrade torch-scatter -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install --no-index --upgrade torch-sparse -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install --no-index --upgrade torch-spline-conv -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install --upgrade torch-geometric
pip install tensorboard
pip install networkx==2.2
pip install ortools
pip install texttable
pip install tsplib95
pip install cython

Install SVN which is required when retriving the GED dataset:

sudo apt install subversion

Compile the A-star code which is required by the GED problem:

python3 setup.py build_ext --inplace

Install LKH-3 which is required by the HCP experiment:

wget http://webhotel4.ruc.dk/~keld/research/LKH-3/LKH-3.0.6.tgz
tar xvfz LKH-3.0.6.tgz
cd LKH-3.0.6
make

And you should find an executable at ./LKH-3.0.6/LKH, which will be called by our code.

Run Experiments

We provide the implementation of PPO-BiHyb and the single-level RL baseline PPO-Single used in our paper. To run evaluation from a pretrained model, replace train by eval in the following commands.

DAG Scheduling

PPO-BiHyb:

python dag_ppo_bihyb_train.py --config ppo_bihyb_dag.yaml

PPO-Single:

python dag_ppo_single_train.py --config ppo_single_dag.yaml

To test different problem sizes, please modify this entry in the yaml file: num_init_dags: 50 (to reproduce the results in our paper, please set 50/100/150)

Graph Edit Distance (GED)

PPO-BiHyb:

python ged_ppo_bihyb_train.py --config ppo_bihyb_ged.yaml

PPO-Single:

python ged_ppo_single_train.py --config ppo_single_ged.yaml

To test different problem sizes, please modify this entry in the yaml file: dataset: AIDS-20-30 (to reproduce the results in our paper, please set AIDS-20-30/AIDS-30-50/AIDS-50-100)

Hamiltonian Cycle Problem (HCP)

PPO-BiHyb:

python hcp_ppo_bihyb_train.py --config ppo_bihyb_hcp.yaml

PPO-Single:

python hcp_ppo_single_train.py --config ppo_single_hcp.yaml

Some Remarks

The yaml configs are set for the smallest sized problems by default. For PPO-Single, you may need to adjust the max_timesteps config for larger-sized problems to ensures that the RL agent can predict a valid solution.

Pretrained models

We provide pretrained models for PPO-BiHyb on these three problems, which are stored in ./pretrained. To use your own parameters, please set the test_model_weight configuration in the yaml file.

Citation and Credits

If you find our paper/code useful in your research, please citing

@inproceedings{wang2021bilevel,
    title={A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs}, 
    author={Runzhong Wang and Zhigang Hua and Gan Liu and Jiayi Zhang and Junchi Yan and Feng Qi and Shuang Yang and Jun Zhou and Xiaokang Yang},
    year={2021},
    booktitle={NeurIPS}
}

And we would like to give credits to the following online resources and thank their great work:

Owner
[email protected]
Thinklab at Shanghai Jiao Tong University, led by Prof. Junchi Yan.
<a href=[email protected]">
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023