Le dataset des images du projet d'IA de 2021

Overview

face-mask-dataset-ilc-2021

Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits

TL;DR:

  • Choisir 200 images JPEG avec environ 1/3 sans masque, 1/3 avec masque, et 1/3 mal mis
  • Renommer les images avec le hash md5 du fichier
  • Annoter avec labelimg (ou autre pour fichier xml au format PASCAL-VOC)
  • commit sur votre branch "contrib_NOM1_NOM2"
  • Une fois toutes les images annotées, => Pull requests vers branche VALID
  • Le discord ILC est pratique pour échanger

1. Répartition

Les images sont repertoriées en 3 catégories :

  • "with_mask", un masque correctment porté et qui recouvre la bouche et le nez
  • "with_incorrect_mask", un masque porté sous le nez, ou de facon pas très covid-friendly
  • "without_mask, Un visage sans masque

Le dataset doit faire environ 2300 images qui répartit par 23 doit donner environ 100 images à annoter par personne

2. Gestion des images

Les images doivent être traitées de la sorte :

  • Le nom correspond au md5sum du fichier
  • Les masques rajoutés en mode photoshop sont à proscrire pour des raisons de performances
  • on recherche les images similaires par exemple à l’aide du script python compare_images
  • La répartition des images doivent être équilibrés (environ le même nombre d'image dans chaque catégorie à 100 images près)

3. Pour commit

L'idée va être d'avoir une branche "VALID" pour ajouter toutes les images en attentes de validation et de ne garder la branche "main" que pour le résultat final. Pensez à bien mettre renseigner vos avancés dans vos commits et pull request. -> Chaque binome ajoutera sur sa branche "contrib_NOM1_NOM2", et on effectuera un pull request vers la branche "VALID" une fois les 200 images ajoutées et annotées

4. Les outils qui vont bien

  • Pour annoter les images : labelimg
  • Pour trouver les doublons dans les images : Le script "compare_images.py" (run n'importe ou), et lui passer les deux dossier source(les images des autres) et to_add (les votres à ajouter)
  • Pour renommer toutes ses images en leur hash MD5 (A faire avant d'annoter) : le script "rename_dir_md5.py" (à déplacer dans le dossier JPEGImages pour run)
Owner
Jonathan Lignier
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022