RoIAlign & crop_and_resize for PyTorch

Related tags

Deep Learningpytorch
Overview

RoIAlign for PyTorch

This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on CPU and GPU.

NOTE: Thanks meikuam for updating this repo for PyTorch 1.0. You can find the original version for torch <= 0.4.1 in pytorch_0.4 branch.

Introduction

The crop_and_resize function is ported from tensorflow, and has the same interface with tensorflow version, except the input feature map should be in NCHW order in PyTorch. They also have the same output value (error < 1e-5) for both forward and backward as we expected, see the comparision in test.py.

Note: Document of crop_and_resize can be found here. And RoIAlign is a wrap of crop_and_resize that uses boxes with unnormalized (x1, y1, x2, y2) as input (while crop_and_resize use normalized (y1, x1, y2, x2) as input). See more details about the difference of RoIAlign and crop_and_resize in tensorpack.

Warning: Currently it only works using the default GPU (index 0)

Usage

  • Install and test

    python setup.py install
    ./test.sh
    
  • Use RoIAlign or crop_and_resize

    Since PyTorch 1.2.0 Legacy autograd function with non-static forward method is deprecated. We use new-style autograd function with static forward method. Example:

    import torch
    from roi_align import RoIAlign      # RoIAlign module
    from roi_align import CropAndResize # crop_and_resize module
    
    # input feature maps (suppose that we have batch_size==2)
    image = torch.arange(0., 49).view(1, 1, 7, 7).repeat(2, 1, 1, 1)
    image[0] += 10
    print('image: ', image)
    
    
    # for example, we have two bboxes with coords xyxy (first with batch_id=0, second with batch_id=1).
    boxes = torch.Tensor([[1, 0, 5, 4],
                         [0.5, 3.5, 4, 7]])
    
    box_index = torch.tensor([0, 1], dtype=torch.int) # index of bbox in batch
    
    # RoIAlign layer with crop sizes:
    crop_height = 4
    crop_width = 4
    roi_align = RoIAlign(crop_height, crop_width)
    
    # make crops:
    crops = roi_align(image, boxes, box_index)
    
    print('crops:', crops)

    Output:

    image:  tensor([[[[10., 11., 12., 13., 14., 15., 16.],
          [17., 18., 19., 20., 21., 22., 23.],
          [24., 25., 26., 27., 28., 29., 30.],
          [31., 32., 33., 34., 35., 36., 37.],
          [38., 39., 40., 41., 42., 43., 44.],
          [45., 46., 47., 48., 49., 50., 51.],
          [52., 53., 54., 55., 56., 57., 58.]]],
    
    
        [[[ 0.,  1.,  2.,  3.,  4.,  5.,  6.],
          [ 7.,  8.,  9., 10., 11., 12., 13.],
          [14., 15., 16., 17., 18., 19., 20.],
          [21., 22., 23., 24., 25., 26., 27.],
          [28., 29., 30., 31., 32., 33., 34.],
          [35., 36., 37., 38., 39., 40., 41.],
          [42., 43., 44., 45., 46., 47., 48.]]]])
          
    crops: tensor([[[[11.0000, 12.0000, 13.0000, 14.0000],
              [18.0000, 19.0000, 20.0000, 21.0000],
              [25.0000, 26.0000, 27.0000, 28.0000],
              [32.0000, 33.0000, 34.0000, 35.0000]]],
    
    
            [[[24.5000, 25.3750, 26.2500, 27.1250],
              [30.6250, 31.5000, 32.3750, 33.2500],
              [36.7500, 37.6250, 38.5000, 39.3750],
              [ 0.0000,  0.0000,  0.0000,  0.0000]]]])
Owner
Long Chen
Computer Vision
Long Chen
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023