This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Overview

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories

This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

1. install python environment.

Follow the instruction of "env_install.txt" to create python virtual environment and install necessary packages. The environment is tested on python >=3.6 and pytorch >=1.8.

2. Gloss alignment algorithm.

Change your dictionary data format into the data format of "wordnet_def.txt" in "data/". Run the following commands to get gloss alignment results.

cd run_align_definitions_main/
python ../model/align_definitions_main.py

3. Download the pretrained model and data.

Visit https://drive.google.com/drive/folders/1I5-iOfWr1E32ahYDCbHKCssMdm74_JXG?usp=sharing. Download the pretrained model (SemEq-General-Large which is based on Roberta-Large) and put it under run_robertaLarge_model_span_WSD_twoStageTune/ and also run_robertaLarge_model_span_FEWS_twoStageTune/. Please make sure that the downloaded model file name is "pretrained_model_CrossEntropy.pt". The script will load the general model and fine-tune on specific WSD datasets to get the expert model.

4. Fine-tune the general model to get an expert model (SemEq-Expert-Large).

All-words WSD:

cd run_robertaLarge_model_span_WSD_twoStageTune/
python ../BERT_model_span/BERT_model_main.py --gpu_id 0 --prepare_data True --eval_dataset WSD --exp_mode twoStageTune --optimizer AdamW --learning_rate 2e-6 --bert_model roberta_large --batch_size 16

Few-shot WSD (FEWS):

cd run_robertaLarge_model_span_FEWS_twoStageTune/
python ../BERT_model_span/BERT_model_main.py --gpu_id 0 --prepare_data True --eval_dataset FEWS --exp_mode twoStageTune --optimizer AdamW --learning_rate 5e-6 --bert_model roberta_large --batch_size 16

5. Evaluate results.

All-words WSD: (you can try different epochs)

cd run_robertaLarge_model_span_WSD_twoStageTune/
python ../evaluate/evaluate_WSD.py --loss CrossEntropy --epoch 1
python ../evaluate/evaluate_WSD_POS.py

Few-shot WSD (FEWS): (you can try different epochs)

cd run_robertaLarge_model_span_FEWS_twoStageTune/
python ../evaluate/evaluate_FEWS.py --loss CrossEntropy --epoch 1

Note that the best results of test set on few-shot setting or zero-shot setting are selected based on dev set across epochs, respectively.

Extra. Apply the trained model to any given sentences to do WSD.

After training, you can apply the trained model (trained_model_CrossEntropy.pt) to any sentences. Examples are included in data_custom/. Examples are based on glosses in WordNet3.0.

cd run_BERT_model_span_CustomData/
python ../BERT_model_span/BERT_model_main.py --gpu_id 0 --prepare_data True --eval_dataset custom_data --exp_mode eval --bert_model roberta_large --batch_size 16

If you think this repo is useful, please cite our work. Thanks!

@inproceedings{yao-etal-2021-connect,
    title = "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories",
    author = "Yao, Wenlin  and
      Pan, Xiaoman  and
      Jin, Lifeng  and
      Chen, Jianshu  and
      Yu, Dian  and
      Yu, Dong",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.610",
    pages = "7741--7751",
}

Disclaimer: This repo is only for research purpose. It is not an officially supported Tencent product.

Owner
Research repositories.
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022