Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Overview

Token Shift GPT

Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwards.

Update: Inexplicably, it actually works quite well. The feedforward module follows the same design as gMLP, except the feature dimension of the gate tensor is divided up into log2(seq_len) chunks, and the mean pool of the past consecutive segments (length 1, 2, 4, 8, etc. into the past) are shifted into each chunk before a projection along the feature dimension.

Install

$ pip install token-shift-gpt

Usage

import torch
from token_shift_gpt import TokenShiftGPT

model = TokenShiftGPT(
    num_tokens = 256,
    dim = 512,
    max_seq_len = 1024,
    depth = 12,
    ff_mult = 8   # when working with small model dimensions, you may want to increase the intermediate feedforward dimension (here, 8x instead of the usual 4x), so the learning is not bottlenecked by the dimensions of the shifted chunk
)

x = torch.randint(0, 256, (1, 1024))
logits = model(x) # (1, 1024, 256)

To use the discounted cumulative sum approach (which only uses one chunk and seems to be just as effective as the above), just set use_discounted_cumsum = True

First install an additional library

$ pip install torch-discounted-cumsum

Then

import torch
from token_shift_gpt import TokenShiftGPT

model = TokenShiftGPT(
    num_tokens = 256,
    dim = 512,
    max_seq_len = 1024,
    depth = 12,
    ff_mult = 8,
    use_discounted_cumsum = True,
    discounted_gamma = 0.9              # gamma factor for discount
)

x = torch.randint(0, 256, (1, 1024))
logits = model(x) # (1, 1024, 256)

Citations

@misc{yu2021s2mlp,
    title   = {S$^2$-MLP: Spatial-Shift MLP Architecture for Vision}, 
    author  = {Tan Yu and Xu Li and Yunfeng Cai and Mingming Sun and Ping Li},
    year    = {2021},
    eprint  = {2106.07477},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{liu2021pay,
    title   = {Pay Attention to MLPs}, 
    author  = {Hanxiao Liu and Zihang Dai and David R. So and Quoc V. Le},
    year    = {2021},
    eprint  = {2105.08050},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@software{peng_bo_2021_5196578,
    author       = {PENG Bo},
    title        = {BlinkDL/RWKV-LM: 0.01},
    month        = {aug},
    year         = {2021},
    publisher    = {Zenodo},
    version      = {0.01},
    doi          = {10.5281/zenodo.5196578},
    url          = {https://doi.org/10.5281/zenodo.5196578}
}
You might also like...
Sequence-to-Sequence Framework in PyTorch
Sequence-to-Sequence Framework in PyTorch

nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au

Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

MASS: Masked Sequence to Sequence Pre-training for Language Generation
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hundreds of billions of parameters or larger.

GPT-NeoX An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hun

Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Comments
  • self.gate is never used?

    self.gate is never used?

    it seems like self.gate is never actually used, or am I missing something?

    https://github.com/lucidrains/token-shift-gpt/blob/1449b263f1fb222279d00f9128c29f25dbef976b/token_shift_gpt/token_shift_gpt.py#L79

    opened by inspirit 1
Releases(0.0.2)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

1 Nov 02, 2021
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
Predict the spans of toxic posts that were responsible for the toxic label of the posts

toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant

Ilias Antonopoulos 3 Jul 24, 2022
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di

16 Oct 08, 2022
A demo of chinese asr

chinese_asr_demo 一个端到端的中文语音识别模型训练、测试框架 具备数据预处理、模型训练、解码、计算wer等等功能 训练数据 训练数据采用thchs_30,

4 Dec 09, 2021
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Tsukinousag1 3 Apr 02, 2022
MMDA - multimodal document analysis

MMDA - multimodal document analysis

AI2 75 Jan 04, 2023
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
Predict an emoji that is associated with a text

Sentiment Analysis Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you

Tetsumichi(Telly) Umada 30 Sep 07, 2022
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023
Official code for "Parser-Free Virtual Try-on via Distilling Appearance Flows", CVPR 2021

Parser-Free Virtual Try-on via Distilling Appearance Flows, CVPR 2021 Official code for CVPR 2021 paper 'Parser-Free Virtual Try-on via Distilling App

395 Jan 03, 2023
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022