Official code for "Parser-Free Virtual Try-on via Distilling Appearance Flows", CVPR 2021

Related tags

Text Data & NLPPF-AFN
Overview

Parser-Free Virtual Try-on via Distilling Appearance Flows, CVPR 2021

Official code for CVPR 2021 paper 'Parser-Free Virtual Try-on via Distilling Appearance Flows'

image

[Paper]

[Checkpoints]

Our Test Envirenment

anaconda3

pytorch 1.1.0

torchvision 0.3.0

cuda 9.0

cupy 6.0.0

opencv-python 4.5.1

1 GTX1080 GPU

python 3.6

Installation

conda create -n tryon python=3.6

source activate tryon or conda activate tryon

conda install pytorch=1.1.0 torchvision=0.3.0 cudatoolkit=9.0 -c pytorch

conda install cupy or pip install cupy==6.0.0

pip install opencv-python

git clone https://github.com/geyuying/PF-AFN.git

cd PF-AFN

Run the demo

  1. First, you need to download the checkpoints from google drive and put the folder "PFAFN" under the folder "checkpoints". The folder "checkpoints/PFAFN" shold contain "warp_model_final.pth" and "gen_model_final.pth".
  2. The "dataset" folder contains the demo images for test, where the "test_img" folder contains the person images, the "test_clothes" folder contains the clothes images, and the "test_edge" folder contains edges extracted from the clothes images with the built-in function in python (We saved the extracted edges from the clothes images for convenience). 'demo.txt' records the test pairs.
  3. During test, a person image, a clothes image and its extracted edge are fed into the network to generate the try-on image. No human parsing results or human pose estimation results are needed for test.
  4. To test with the saved model, run test.sh and the results will be saved in the folder "results".
  5. To reproduce our results from the saved model, your test environment should be the same as our test environment, especifically for the version of cupy.

Dataset

  1. VITON contains a training set of 14,221 image pairs and a test set of 2,032 image pairs, each of which has a front-view woman photo and a top clothing image with the resolution 256 x 192. Our saved model is trained on the VITON training set and tested on the VITON test set.
  2. To test our saved model on the complete VITON test set, you can download VITON_test.

License

The use of this code is RESTRICTED to non-commercial research and educational purposes.

Citation

This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Every Google, Azure & IBM text to speech voice for free

TTS-Grabber Quick thing i made about a year ago to download any text with any tts voice, over 630 voices to choose from currently. It will split the i

16 Dec 07, 2022
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
Experiments in converting wikidata to ftm

FollowTheMoney / Wikidata mappings This repo will contain tools for converting Wikidata entities into FtM schema. Prefixes: https://www.mediawiki.org/

Friedrich Lindenberg 2 Nov 12, 2021
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

Maarten van Gompel 46 Dec 14, 2022
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023