UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

Related tags

Deep LearningUmlsBERT
Overview

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

General info

This is the code that was used of the paper : UmlsBERT: Augmenting Contextual Embeddings with a Clinical Metathesaurus (NAACL 2021).

In this work, we introduced UmlsBERT, a contextual embedding model capable of integrating domain knowledge during pre-training. It was trained on biomedical corpora and uses the Unified Medical Language System (UMLS) clinical metathesaurus in two ways:

  • We proposed a new multi-label loss function for the pre-training of the Masked Language Modelling (Masked LM) task of UmlsBERT that considers the connections between medical words using the CUI attribute of UMLS.

  • We introduced a semantic group embedding that enriches the input embeddings process of UmlsBERT by forcing the model to take into consideration the association of the words that are part of the same semantic group.

Technologies

This project was created with python 3.7 and PyTorch 0.4.1 and it is based on the transformer github repo of the huggingface team

Setup

We recommend installing and running the code from within a virtual environment.

Creating a Conda Virtual Environment

First, download Anaconda from this link

Second, create a conda environment with python 3.7.

$ conda create -n umlsbert python=3.7

Upon restarting your terminal session, you can activate the conda environment:

$ conda activate umlsbert 

Install the required python packages

In the project root directory, run the following to install the required packages.

pip3 install -r requirements.txt

Install from a VM

If you start a VM, please run the following command sequentially before install the required python packages. The following code example is for a vast.ai Virtual Machine.

apt-get update
apt install git-all
apt install python3-pip
apt-get install jupyter

Dowload pre-trained UmlsBERT model

In order to use pre-trained UmlsBERT model for the word embeddings (or the semantic embeddings), you need to dowload it into the folder examples/checkpoint/ from the link:

 wget -O umlsbert.tar.xz https://www.dropbox.com/s/kziiuyhv9ile00s/umlsbert.tar.xz?dl=0

into the folder examples/checkpoint/ and unzip it with the following command:

tar -xvf umlsbert.tar.xz

Reproduce UmlsBERT

Pretraining

  • The UmlsBERT was pretrained on the MIMIC data. Unfortunately, we cannot provide the text of the MIMIC III dataset as training course is mandatory in order to access the particular dataset.

  • The MIMIC III dataset can be downloaded from the following link

  • The pretraining an UmlsBERT model depends on data from NLTK so you'll have to download them. Run the Python interpreter (python3) and type the commands:

>>> import nltk
>>> nltk.download('punkt')
  • After downloading the NOTEEVENTS table in the examples/language-modeling/ folder, run the following python code that we provide in the examples/language-modeling/ folder to create the mimic_string.txt on the folder examples/language-modeling/:
python3 mimic.py

you can pre-trained a UmlsBERT model by running the following command on the examples/language-modeling/:

Example for pretraining Bio_clinicalBert:

python3 run_language_modeling.py --output_dir ./models/clinicalBert-v1  --model_name_or_path  emilyalsentzer/Bio_ClinicalBERT  --mlm     --do_train     --learning_rate 5e-5     --max_steps 150000   --block_size 128   --save_steps 1000     --per_gpu_train_batch_size 32     --seed 42     --line_by_line      --train_data_file mimic_string.txt  --umls --config_name  config.json --med_document ./voc/vocab_updated.txt

Downstream Tasks

MedNLi task

  • MedNLI is available through the MIMIC-III derived data repository. Any individual certified to access MIMIC-III can access MedNLI through the following link

    • Converting into an appropriate format: After downloading and unzipping the MedNLi dataset (mednli-a-natural-language-inference-dataset-for-the-clinical-domain-1.0.0.zip) on the folder examples/text-classification/dataset/mednli/, run the following python code in the examples/text-classification/dataset/mednli/ folder that we provide in order to convert the dataset into a format that is appropriate for the UmlsBERT model
python3  mednli.py
  • This python code will create the files: train.tsv,dev_matched.tsv and test_matched.tsv in the text-classification/dataset/mednli/mednli folder
  • We provide an example-notebook under the folder experiements/:

or directly run UmlsBert on the text-classification/ folder:

python3 run_glue.py --output_dir ./models/medicalBert-v1 --model_name_or_path  ../checkpoint/umlsbert   --data_dir  dataset/mednli/mednli  --num_train_epochs 3 --per_device_train_batch_size 32  --learning_rate 1e-4   --do_train --do_eval  --do_predict  --task_name mnli --umls --med_document ./voc/vocab_updated.txt

NER task

  • Due to the copyright issue of i2b2 datasets, in order to download them follow the link.

    • Converting into an appropriate format: Since we wanted to directly compare with the Bio_clinical_Bert we used their code in order to convert the i2b2 dataset to a format which is appropriate for the BERT architecture which can be found in the following link: link

    We provide the code for converting the i2b2 dataset with the following instruction for each dataset:

  • i2b2 2006:

    • In the folder token-classification/dataset/i2b2_preprocessing/i2b2_2006_deid unzip the deid_surrogate_test_all_groundtruth_version2.zip and deid_surrogate_train_all_version2.zip
    • run the create.sh scrip with the command ./create.sh
    • The script will create the files: label.txt, dev.txt, test.txt, train.txt in the token-classification/dataset/NER/2006 folder
  • i2b2 2010:

    • In the folder token-classification/dataset/i2b2_preprocessing/i2b2_2010_relations unzip the test_data.tar.gz, concept_assertion_relation_training_data.tar.gz and reference_standard_for_test_data.tar.gz
    • Run the jupyter notebook Reformat.ipynb
    • The notebook will create the files: label.txt, dev.txt, test.txt, train.txt in the token-classification/dataset/NER/2010 folder
  • i2b2 2012:

    • In the folder token-classification/dataset/i2b2_preprocessing/i2b2_2012 unzip the 2012-07-15.original-annotation.release.tar.gz and 2012-08-08.test-data.event-timex-groundtruth.tar.gz
    • Run the jupyter notebook Reformat.ipynb
    • The notebook will create the files: label.txt, dev.txt, test.txt, train.txt in the token-classification/dataset/NER/2012 folder
  • i2b2 2014:

    • In the folder token-classification/dataset/i2b2_preprocessing/i2b2_2014_deid_hf_risk unzip the 2014_training-PHI-Gold-Set1.tar.gz,training-PHI-Gold-Set2.tar.gz and testing-PHI-Gold-fixed.tar.gz
    • Run the jupyter notebook Reformat.ipynb
    • The notebook will create the files: label.txt, dev.txt, test.txt, train.txt in the token-classification/dataset/NER/2014 folder
  • We provide an example-notebook under the folder experiements/:

or directly run UmlsBert on the token-classification/ folder:

python3 run_ner.py --output_dir ./models/medicalBert-v1 --model_name_or_path  ../checkpoint/umlsbert    --labels dataset/NER/2006/label.txt --data_dir  dataset/NER/2006 --do_train --num_train_epochs 20 --per_device_train_batch_size 32  --learning_rate 1e-4  --do_predict --do_eval --umls --med_document ./voc/vocab_updated.txt

If you find our work useful, can cite our paper using:

@misc{michalopoulos2020umlsbert,
      title={UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus}, 
      author={George Michalopoulos and Yuanxin Wang and Hussam Kaka and Helen Chen and Alex Wong},
      year={2020},
      eprint={2010.10391},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022