CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Related tags

Deep LearningF-LSeSim
Overview

Spatially-Correlative Loss

arXiv | website


We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Tasks". Based on the inherent self-similarity of object, we propose a new structure-preserving loss for one-sided unsupervised I2I network. The new loss will deal only with spatial relationship of repeated signal, regardless of their original absolute value.

The Spatially-Correlative Loss for Various Image Translation Tasks
Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai
NTU and Monash University
In CVPR2021

ToDo

  • release the single-modal I2I model
  • a simple example to use the proposed loss

Example Results

Unpaired Image-to-Image Translation

Single Image Translation

More results on project page

Getting Started

Installation

This code was tested with Pytorch 1.7.0, CUDA 10.2, and Python 3.7

pip install visdom dominate
  • Clone this repo:
git clone https://github.com/lyndonzheng/F-LSeSim
cd F-LSeSim

Datasets

Please refer to the original CUT and CycleGAN to download datasets and learn how to create your own datasets.

Training

  • Train the single-modal I2I translation model:
sh ./scripts/train_sc.sh 
  • Set --use_norm for cosine similarity map, the default similarity is dot-based attention score. --learned_attn, --augment for the learned self-similarity.

  • To view training results and loss plots, run python -m visdom.server and copy the URL http://localhost:port.

  • Training models will be saved under the checkpoints folder.

  • The more training options can be found in the options folder.

  • Train the single-image translation model:

sh ./scripts/train_sinsc.sh 

As the multi-modal I2I translation model was trained on MUNIT, we would not plan to merge the code to this repository. If you wish to obtain multi-modal results, please contact us at [email protected].

Testing

  • Test the single-modal I2I translation model:
sh ./scripts/test_sc.sh
  • Test the single-image translation model:
sh ./scripts/test_sinsc.sh
  • Test the FID score for all training epochs:
sh ./scripts/test_fid.sh

Pretrained Models

Download the pre-trained models (will be released soon) using the following links and put them undercheckpoints/ directory.

Citation

@inproceedings{zheng2021spatiallycorrelative,
  title={The Spatially-Correlative Loss for Various Image Translation Tasks},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Acknowledge

Our code is developed based on CUT and CycleGAN. We also thank pytorch-fid for FID computation, LPIPS for diversity score, and D&C for density and coverage evaluation.

Owner
Chuanxia Zheng
Chuanxia Zheng
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022