Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

Overview

logo

MIT License


NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%.

Table of contents

Objective

Original implementations are quite complex and not really beginner friendly. So I tried to simplify most of it. Also, there are tons of not-yet release papers implementation. So feel free to use it for your own research!

I will attached github repositories for models that I not implemented from scratch, basically I copy, paste and fix those code for deprecated issues.

Tensorflow version

Tensorflow version 1.13 and above only, not included 2.X version. 1.13 < Tensorflow < 2.0

pip install -r requirements.txt

Contents

Abstractive Summarization

Trained on India news.

Accuracy based on 10 epochs only, calculated using word positions.

Complete list (12 notebooks)
  1. LSTM Seq2Seq using topic modelling, test accuracy 13.22%
  2. LSTM Seq2Seq + Luong Attention using topic modelling, test accuracy 12.39%
  3. LSTM Seq2Seq + Beam Decoder using topic modelling, test accuracy 10.67%
  4. LSTM Bidirectional + Luong Attention + Beam Decoder using topic modelling, test accuracy 8.29%
  5. Pointer-Generator + Bahdanau, https://github.com/xueyouluo/my_seq2seq, test accuracy 15.51%
  6. Copynet, test accuracy 11.15%
  7. Pointer-Generator + Luong, https://github.com/xueyouluo/my_seq2seq, test accuracy 16.51%
  8. Dilated Seq2Seq, test accuracy 10.88%
  9. Dilated Seq2Seq + Self Attention, test accuracy 11.54%
  10. BERT + Dilated CNN Seq2seq, test accuracy 13.5%
  11. self-attention + Pointer-Generator, test accuracy 4.34%
  12. Dilated-CNN Seq2seq + Pointer-Generator, test accuracy 5.57%

Chatbot

Trained on Cornell Movie Dialog corpus, accuracy table in chatbot.

Complete list (54 notebooks)
  1. Basic cell Seq2Seq-manual
  2. LSTM Seq2Seq-manual
  3. GRU Seq2Seq-manual
  4. Basic cell Seq2Seq-API Greedy
  5. LSTM Seq2Seq-API Greedy
  6. GRU Seq2Seq-API Greedy
  7. Basic cell Bidirectional Seq2Seq-manual
  8. LSTM Bidirectional Seq2Seq-manual
  9. GRU Bidirectional Seq2Seq-manual
  10. Basic cell Bidirectional Seq2Seq-API Greedy
  11. LSTM Bidirectional Seq2Seq-API Greedy
  12. GRU Bidirectional Seq2Seq-API Greedy
  13. Basic cell Seq2Seq-manual + Luong Attention
  14. LSTM Seq2Seq-manual + Luong Attention
  15. GRU Seq2Seq-manual + Luong Attention
  16. Basic cell Seq2Seq-manual + Bahdanau Attention
  17. LSTM Seq2Seq-manual + Bahdanau Attention
  18. GRU Seq2Seq-manual + Bahdanau Attention
  19. LSTM Bidirectional Seq2Seq-manual + Luong Attention
  20. GRU Bidirectional Seq2Seq-manual + Luong Attention
  21. LSTM Bidirectional Seq2Seq-manual + Bahdanau Attention
  22. GRU Bidirectional Seq2Seq-manual + Bahdanau Attention
  23. LSTM Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong
  24. GRU Bidirectional Seq2Seq-manual + backward Bahdanau + forward Luong
  25. LSTM Seq2Seq-API Greedy + Luong Attention
  26. GRU Seq2Seq-API Greedy + Luong Attention
  27. LSTM Seq2Seq-API Greedy + Bahdanau Attention
  28. GRU Seq2Seq-API Greedy + Bahdanau Attention
  29. LSTM Seq2Seq-API Beam Decoder
  30. GRU Seq2Seq-API Beam Decoder
  31. LSTM Bidirectional Seq2Seq-API + Luong Attention + Beam Decoder
  32. GRU Bidirectional Seq2Seq-API + Luong Attention + Beam Decoder
  33. LSTM Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder
  34. GRU Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder
  35. Bytenet
  36. LSTM Seq2Seq + tf.estimator
  37. Capsule layers + LSTM Seq2Seq-API Greedy
  38. Capsule layers + LSTM Seq2Seq-API + Luong Attention + Beam Decoder
  39. LSTM Bidirectional Seq2Seq-API + backward Bahdanau + forward Luong + Stack Bahdanau Luong Attention + Beam Decoder + Dropout + L2
  40. DNC Seq2Seq
  41. LSTM Bidirectional Seq2Seq-API + Luong Monotic Attention + Beam Decoder
  42. LSTM Bidirectional Seq2Seq-API + Bahdanau Monotic Attention + Beam Decoder
  43. End-to-End Memory Network + Basic cell
  44. End-to-End Memory Network + LSTM cell
  45. Attention is all you need
  46. Transformer-XL
  47. Attention is all you need + Beam Search
  48. Transformer-XL + LSTM
  49. GPT-2 + LSTM
  50. CNN Seq2seq
  51. Conv-Encoder + LSTM
  52. Tacotron + Greedy decoder
  53. Tacotron + Beam decoder
  54. Google NMT

Dependency-Parser

Trained on CONLL English Dependency. Train set to train, dev and test sets to test.

Stackpointer and Biaffine-attention originally from https://github.com/XuezheMax/NeuroNLP2 written in Pytorch.

Accuracy based on arc, types and root accuracies after 15 epochs only.

Complete list (8 notebooks)
  1. Bidirectional RNN + CRF + Biaffine, arc accuracy 70.48%, types accuracy 65.18%, root accuracy 66.4%
  2. Bidirectional RNN + Bahdanau + CRF + Biaffine, arc accuracy 70.82%, types accuracy 65.33%, root accuracy 66.77%
  3. Bidirectional RNN + Luong + CRF + Biaffine, arc accuracy 71.22%, types accuracy 65.73%, root accuracy 67.23%
  4. BERT Base + CRF + Biaffine, arc accuracy 64.30%, types accuracy 62.89%, root accuracy 74.19%
  5. Bidirectional RNN + Biaffine Attention + Cross Entropy, arc accuracy 72.42%, types accuracy 63.53%, root accuracy 68.51%
  6. BERT Base + Biaffine Attention + Cross Entropy, arc accuracy 72.85%, types accuracy 67.11%, root accuracy 73.93%
  7. Bidirectional RNN + Stackpointer, arc accuracy 61.88%, types accuracy 48.20%, root accuracy 89.39%
  8. XLNET Base + Biaffine Attention + Cross Entropy, arc accuracy 74.41%, types accuracy 71.37%, root accuracy 73.17%

Entity-Tagging

Trained on CONLL NER.

Complete list (9 notebooks)
  1. Bidirectional RNN + CRF, test accuracy 96%
  2. Bidirectional RNN + Luong Attention + CRF, test accuracy 93%
  3. Bidirectional RNN + Bahdanau Attention + CRF, test accuracy 95%
  4. Char Ngrams + Bidirectional RNN + Bahdanau Attention + CRF, test accuracy 96%
  5. Char Ngrams + Bidirectional RNN + Bahdanau Attention + CRF, test accuracy 96%
  6. Char Ngrams + Residual Network + Bahdanau Attention + CRF, test accuracy 69%
  7. Char Ngrams + Attention is you all Need + CRF, test accuracy 90%
  8. BERT, test accuracy 99%
  9. XLNET-Base, test accuracy 99%

Extractive Summarization

Trained on CNN News dataset.

Accuracy based on ROUGE-2.

Complete list (4 notebooks)
  1. LSTM RNN, test accuracy 16.13%
  2. Dilated-CNN, test accuracy 15.54%
  3. Multihead Attention, test accuracy 26.33%
  4. BERT-Base

Generator

Trained on Shakespeare dataset.

Complete list (15 notebooks)
  1. Character-wise RNN + LSTM
  2. Character-wise RNN + Beam search
  3. Character-wise RNN + LSTM + Embedding
  4. Word-wise RNN + LSTM
  5. Word-wise RNN + LSTM + Embedding
  6. Character-wise + Seq2Seq + GRU
  7. Word-wise + Seq2Seq + GRU
  8. Character-wise RNN + LSTM + Bahdanau Attention
  9. Character-wise RNN + LSTM + Luong Attention
  10. Word-wise + Seq2Seq + GRU + Beam
  11. Character-wise + Seq2Seq + GRU + Bahdanau Attention
  12. Word-wise + Seq2Seq + GRU + Bahdanau Attention
  13. Character-wise Dilated CNN + Beam search
  14. Transformer + Beam search
  15. Transformer XL + Beam search

Language-detection

Trained on Tatoeba dataset.

Complete list (1 notebooks)
  1. Fast-text Char N-Grams

Neural Machine Translation

Trained on English-French, accuracy table in neural-machine-translation.

Complete list (53 notebooks)

1.basic-seq2seq 2.lstm-seq2seq 3.gru-seq2seq 4.basic-seq2seq-contrib-greedy 5.lstm-seq2seq-contrib-greedy 6.gru-seq2seq-contrib-greedy 7.basic-birnn-seq2seq 8.lstm-birnn-seq2seq 9.gru-birnn-seq2seq 10.basic-birnn-seq2seq-contrib-greedy 11.lstm-birnn-seq2seq-contrib-greedy 12.gru-birnn-seq2seq-contrib-greedy 13.basic-seq2seq-luong 14.lstm-seq2seq-luong 15.gru-seq2seq-luong 16.basic-seq2seq-bahdanau 17.lstm-seq2seq-bahdanau 18.gru-seq2seq-bahdanau 19.basic-birnn-seq2seq-bahdanau 20.lstm-birnn-seq2seq-bahdanau 21.gru-birnn-seq2seq-bahdanau 22.basic-birnn-seq2seq-luong 23.lstm-birnn-seq2seq-luong 24.gru-birnn-seq2seq-luong 25.lstm-seq2seq-contrib-greedy-luong 26.gru-seq2seq-contrib-greedy-luong 27.lstm-seq2seq-contrib-greedy-bahdanau 28.gru-seq2seq-contrib-greedy-bahdanau 29.lstm-seq2seq-contrib-beam-luong 30.gru-seq2seq-contrib-beam-luong 31.lstm-seq2seq-contrib-beam-bahdanau 32.gru-seq2seq-contrib-beam-bahdanau 33.lstm-birnn-seq2seq-contrib-beam-bahdanau 34.lstm-birnn-seq2seq-contrib-beam-luong 35.gru-birnn-seq2seq-contrib-beam-bahdanau 36.gru-birnn-seq2seq-contrib-beam-luong 37.lstm-birnn-seq2seq-contrib-beam-luongmonotonic 38.gru-birnn-seq2seq-contrib-beam-luongmonotic 39.lstm-birnn-seq2seq-contrib-beam-bahdanaumonotonic 40.gru-birnn-seq2seq-contrib-beam-bahdanaumonotic 41.residual-lstm-seq2seq-greedy-luong 42.residual-gru-seq2seq-greedy-luong 43.residual-lstm-seq2seq-greedy-bahdanau 44.residual-gru-seq2seq-greedy-bahdanau 45.memory-network-lstm-decoder-greedy 46.google-nmt 47.transformer-encoder-transformer-decoder 48.transformer-encoder-lstm-decoder-greedy 49.bertmultilanguage-encoder-bertmultilanguage-decoder 50.bertmultilanguage-encoder-lstm-decoder 51.bertmultilanguage-encoder-transformer-decoder 52.bertenglish-encoder-transformer-decoder 53.transformer-t2t-2gpu

OCR (optical character recognition)

Complete list (2 notebooks)
  1. CNN + LSTM RNN, test accuracy 100%
  2. Im2Latex, test accuracy 100%

POS-Tagging

Trained on CONLL POS.

Complete list (8 notebooks)
  1. Bidirectional RNN + CRF, test accuracy 92%
  2. Bidirectional RNN + Luong Attention + CRF, test accuracy 91%
  3. Bidirectional RNN + Bahdanau Attention + CRF, test accuracy 91%
  4. Char Ngrams + Bidirectional RNN + Bahdanau Attention + CRF, test accuracy 91%
  5. Char Ngrams + Bidirectional RNN + Bahdanau Attention + CRF, test accuracy 91%
  6. Char Ngrams + Residual Network + Bahdanau Attention + CRF, test accuracy 3%
  7. Char Ngrams + Attention is you all Need + CRF, test accuracy 89%
  8. BERT, test accuracy 99%

Question-Answers

Trained on bAbI Dataset.

Complete list (4 notebooks)
  1. End-to-End Memory Network + Basic cell
  2. End-to-End Memory Network + GRU cell
  3. End-to-End Memory Network + LSTM cell
  4. Dynamic Memory

Sentence-pair

Trained on Cornell Movie--Dialogs Corpus

Complete list (1 notebooks)
  1. BERT

Speech to Text

Trained on Toronto speech dataset.

Complete list (11 notebooks)
  1. Tacotron, https://github.com/Kyubyong/tacotron_asr, test accuracy 77.09%
  2. BiRNN LSTM, test accuracy 84.66%
  3. BiRNN Seq2Seq + Luong Attention + Cross Entropy, test accuracy 87.86%
  4. BiRNN Seq2Seq + Bahdanau Attention + Cross Entropy, test accuracy 89.28%
  5. BiRNN Seq2Seq + Bahdanau Attention + CTC, test accuracy 86.35%
  6. BiRNN Seq2Seq + Luong Attention + CTC, test accuracy 80.30%
  7. CNN RNN + Bahdanau Attention, test accuracy 80.23%
  8. Dilated CNN RNN, test accuracy 31.60%
  9. Wavenet, test accuracy 75.11%
  10. Deep Speech 2, test accuracy 81.40%
  11. Wav2Vec Transfer learning BiRNN LSTM, test accuracy 83.24%

Spelling correction

Complete list (4 notebooks)
  1. BERT-Base
  2. XLNET-Base
  3. BERT-Base Fast
  4. BERT-Base accurate

SQUAD Question-Answers

Trained on SQUAD Dataset.

Complete list (1 notebooks)
  1. BERT,
{"exact_match": 77.57805108798486, "f1": 86.18327335287402}

Stemming

Trained on English Lemmatization.

Complete list (6 notebooks)
  1. LSTM + Seq2Seq + Beam
  2. GRU + Seq2Seq + Beam
  3. LSTM + BiRNN + Seq2Seq + Beam
  4. GRU + BiRNN + Seq2Seq + Beam
  5. DNC + Seq2Seq + Greedy
  6. BiRNN + Bahdanau + Copynet

Text Augmentation

Complete list (8 notebooks)
  1. Pretrained Glove
  2. GRU VAE-seq2seq-beam TF-probability
  3. LSTM VAE-seq2seq-beam TF-probability
  4. GRU VAE-seq2seq-beam + Bahdanau Attention TF-probability
  5. VAE + Deterministic Bahdanau Attention, https://github.com/HareeshBahuleyan/tf-var-attention
  6. VAE + VAE Bahdanau Attention, https://github.com/HareeshBahuleyan/tf-var-attention
  7. BERT-Base + Nucleus Sampling
  8. XLNET-Base + Nucleus Sampling

Text classification

Trained on English sentiment dataset, accuracy table in text-classification.

Complete list (79 notebooks)
  1. Basic cell RNN
  2. Basic cell RNN + Hinge
  3. Basic cell RNN + Huber
  4. Basic cell Bidirectional RNN
  5. Basic cell Bidirectional RNN + Hinge
  6. Basic cell Bidirectional RNN + Huber
  7. LSTM cell RNN
  8. LSTM cell RNN + Hinge
  9. LSTM cell RNN + Huber
  10. LSTM cell Bidirectional RNN
  11. LSTM cell Bidirectional RNN + Huber
  12. LSTM cell RNN + Dropout + L2
  13. GRU cell RNN
  14. GRU cell RNN + Hinge
  15. GRU cell RNN + Huber
  16. GRU cell Bidirectional RNN
  17. GRU cell Bidirectional RNN + Hinge
  18. GRU cell Bidirectional RNN + Huber
  19. LSTM RNN + Conv2D
  20. K-max Conv1d
  21. LSTM RNN + Conv1D + Highway
  22. LSTM RNN + Basic Attention
  23. LSTM Dilated RNN
  24. Layer-Norm LSTM cell RNN
  25. Only Attention Neural Network
  26. Multihead-Attention Neural Network
  27. Neural Turing Machine
  28. LSTM Seq2Seq
  29. LSTM Seq2Seq + Luong Attention
  30. LSTM Seq2Seq + Bahdanau Attention
  31. LSTM Seq2Seq + Beam Decoder
  32. LSTM Bidirectional Seq2Seq
  33. Pointer Net
  34. LSTM cell RNN + Bahdanau Attention
  35. LSTM cell RNN + Luong Attention
  36. LSTM cell RNN + Stack Bahdanau Luong Attention
  37. LSTM cell Bidirectional RNN + backward Bahdanau + forward Luong
  38. Bytenet
  39. Fast-slow LSTM
  40. Siamese Network
  41. LSTM Seq2Seq + tf.estimator
  42. Capsule layers + RNN LSTM
  43. Capsule layers + LSTM Seq2Seq
  44. Capsule layers + LSTM Bidirectional Seq2Seq
  45. Nested LSTM
  46. LSTM Seq2Seq + Highway
  47. Triplet loss + LSTM
  48. DNC (Differentiable Neural Computer)
  49. ConvLSTM
  50. Temporal Convd Net
  51. Batch-all Triplet-loss + LSTM
  52. Fast-text
  53. Gated Convolution Network
  54. Simple Recurrent Unit
  55. LSTM Hierarchical Attention Network
  56. Bidirectional Transformers
  57. Dynamic Memory Network
  58. Entity Network
  59. End-to-End Memory Network
  60. BOW-Chars Deep sparse Network
  61. Residual Network using Atrous CNN
  62. Residual Network using Atrous CNN + Bahdanau Attention
  63. Deep pyramid CNN
  64. Transformer-XL
  65. Transfer learning GPT-2 345M
  66. Quasi-RNN
  67. Tacotron
  68. Slice GRU
  69. Slice GRU + Bahdanau
  70. Wavenet
  71. Transfer learning BERT Base
  72. Transfer learning XL-net Large
  73. LSTM BiRNN global Max and average pooling
  74. Transfer learning BERT Base drop 6 layers
  75. Transfer learning BERT Large drop 12 layers
  76. Transfer learning XL-net Base
  77. Transfer learning ALBERT
  78. Transfer learning ELECTRA Base
  79. Transfer learning ELECTRA Large

Text Similarity

Trained on MNLI.

Complete list (10 notebooks)
  1. BiRNN + Contrastive loss, test accuracy 73.032%
  2. BiRNN + Cross entropy, test accuracy 74.265%
  3. BiRNN + Circle loss, test accuracy 75.857%
  4. BiRNN + Proxy loss, test accuracy 48.37%
  5. BERT Base + Cross entropy, test accuracy 91.123%
  6. BERT Base + Circle loss, test accuracy 89.903%
  7. ELECTRA Base + Cross entropy, test accuracy 96.317%
  8. ELECTRA Base + Circle loss, test accuracy 95.603%
  9. XLNET Base + Cross entropy, test accuracy 93.998%
  10. XLNET Base + Circle loss, test accuracy 94.033%

Text to Speech

Trained on Toronto speech dataset.

Complete list (8 notebooks)
  1. Tacotron, https://github.com/Kyubyong/tacotron
  2. CNN Seq2seq + Dilated CNN vocoder
  3. Seq2Seq + Bahdanau Attention
  4. Seq2Seq + Luong Attention
  5. Dilated CNN + Monothonic Attention + Dilated CNN vocoder
  6. Dilated CNN + Self Attention + Dilated CNN vocoder
  7. Deep CNN + Monothonic Attention + Dilated CNN vocoder
  8. Deep CNN + Self Attention + Dilated CNN vocoder

Topic Generator

Trained on Malaysia news.

Complete list (4 notebooks)
  1. TAT-LSTM
  2. TAV-LSTM
  3. MTA-LSTM
  4. Dilated CNN Seq2seq

Topic Modeling

Extracted from English sentiment dataset.

Complete list (3 notebooks)
  1. LDA2Vec
  2. BERT Attention
  3. XLNET Attention

Unsupervised Extractive Summarization

Trained on random books.

Complete list (3 notebooks)
  1. Skip-thought Vector
  2. Residual Network using Atrous CNN
  3. Residual Network using Atrous CNN + Bahdanau Attention

Vectorizer

Trained on English sentiment dataset.

Complete list (11 notebooks)
  1. Word Vector using CBOW sample softmax
  2. Word Vector using CBOW noise contrastive estimation
  3. Word Vector using skipgram sample softmax
  4. Word Vector using skipgram noise contrastive estimation
  5. Supervised Embedded
  6. Triplet-loss + LSTM
  7. LSTM Auto-Encoder
  8. Batch-All Triplet-loss LSTM
  9. Fast-text
  10. ELMO (biLM)
  11. Triplet-loss + BERT

Visualization

Complete list (4 notebooks)
  1. Attention heatmap on Bahdanau Attention
  2. Attention heatmap on Luong Attention
  3. BERT attention, https://github.com/hsm207/bert_attn_viz
  4. XLNET attention

Old-to-Young Vocoder

Trained on Toronto speech dataset.

Complete list (1 notebooks)
  1. Dilated CNN

Attention

Complete list (8 notebooks)
  1. Bahdanau
  2. Luong
  3. Hierarchical
  4. Additive
  5. Soft
  6. Attention-over-Attention
  7. Bahdanau API
  8. Luong API

Not-deep-learning

  1. Markov chatbot
  2. Decomposition summarization (3 notebooks)
Owner
HUSEIN ZOLKEPLI
I really love to fart and korek hidung.
HUSEIN ZOLKEPLI
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Code for paper "Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features"

Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features Train python main.py --dataset brazil-flights C

wang zhang 0 Jun 28, 2022
Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

e-editiones.org 14 Nov 15, 2022
Source code for the paper "TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations"

TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations Created by Jiahao Pang, Duanshun Li, and Dong Tian from InterDigital In

InterDigital 21 Dec 29, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
NLP: SLU tagging

NLP: SLU tagging

北海若 3 Jan 14, 2022
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

UlionTse 907 Dec 27, 2022
An assignment on creating a minimalist neural network toolkit for CS11-747

minnn by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik This is an exercise in developing a minimalist neural network toolkit for NLP, part of Car

Graham Neubig 63 Dec 29, 2022
뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

뉴스 도메인 질의응답 시스템 본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로

TaegyeongEo 4 Jul 08, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.

Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang

Rushabh 2 Nov 13, 2021