jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.

Overview

jel: Japanese Entity Linker

  • jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.

Usage

  • Currently, link and question methods are supported.

el.link

  • This returnes named entity and its candidate ones from Wikipedia titles.
from jel import EntityLinker
el = EntityLinker()

el.link('今日は東京都のマックにアップルを買いに行き、スティーブジョブスとドナルドに会い、堀田区に引っ越した。')
>> [
    {
        "text": "東京都",
        "label": "GPE",
        "span": [
            3,
            6
        ],
        "predicted_normalized_entities": [
            [
                "東京都庁",
                0.1084
            ],
            [
                "東京",
                0.0633
            ],
            [
                "国家地方警察東京都本部",
                0.0604
            ],
            [
                "東京都",
                0.0598
            ],
            ...
        ]
    },
    {
        "text": "アップル",
        "label": "ORG",
        "span": [
            11,
            15
        ],
        "predicted_normalized_entities": [
            [
                "アップル",
                0.2986
            ],
            [
                "アップル インコーポレイテッド",
                0.1792
            ],
            …
        ]
    }

el.question

  • This returnes candidate entity for any question from Wikipedia titles.
>>> linker.question('日本の総理大臣は?')
[('菅内閣', 0.05791765857101555), ('枢密院', 0.05592481946602986), ('党', 0.05430194711042564), ('総選挙', 0.052795400668513175)]

Setup

$ pip install jel
$ python -m spacy download ja_core_news_md

Run as API

$ uvicorn jel.api.server:app --reload --port 8000 --host 0.0.0.0 --log-level trace

Example

# link
$ curl localhost:8000/link -X POST -H "Content-Type: application/json" \
    -d '{"sentence": "日本の総理は菅総理だ。"}'

# question
$ curl localhost:8000/question -X POST -H "Content-Type: application/json" \
    -d '{"sentence": "日本で有名な総理は?"}

Test

$ python pytest

Notes

  • faiss==1.5.3 from pip causes error _swigfaiss.
  • To solve this, see this issue.

LICENSE

Apache 2.0 License.

CITATION

@INPROCEEDINGS{manabe2019chive,
    author    = {真鍋陽俊, 岡照晃, 海川祥毅, 髙岡一馬, 内田佳孝, 浅原正幸},
    title     = {複数粒度の分割結果に基づく日本語単語分散表現},
    booktitle = "言語処理学会第25回年次大会(NLP2019)",
    year      = "2019",
    pages     = "NLP2019-P8-5",
    publisher = "言語処理学会",
}
You might also like...
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Codes to pre-train Japanese T5 models

t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug

Auto translate textbox from Japanese to English or Indonesia
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

Script to download some free japanese lessons in portuguse from NHK
Script to download some free japanese lessons in portuguse from NHK

Nihongo_nhk This is a script to download some free japanese lessons in portuguese from NHK. It can be executed by installing the packages with: pip in

An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

Comments
  • ModuleNotFoundError

    ModuleNotFoundError

    Traceback (most recent call last):
      File "scripts/biencoder_training_check.py", line 1, in <module>
        from jel.biencoder.train import biencoder_training
    ModuleNotFoundError: No module named 'jel'
    
    
    opened by izuna385 1
  • Separate Estimation Model and DB

    Separate Estimation Model and DB

    Because the inference model and knowledge base are currently loaded together, it takes 30 seconds to load the model. To prevent this, we will separate the DB into a separate container.

    opened by izuna385 0
Releases(v0.1.1)
Owner
izuna385
izuna385[_@_]gmail.com
izuna385
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022
Python SDK for working with Voicegain Speech-to-Text

Voicegain Speech-to-Text Python SDK Python SDK for the Voicegain Speech-to-Text API. This API allows for large vocabulary speech-to-text transcription

Voicegain 3 Dec 14, 2022
A Telegram bot to add notes to Flomo.

flomo bot 使用 Telegram 机器人发送笔记到你的 Flomo. 你需要有一台可访问 Telegram 的服务器。 Steps @BotFather 新建机器人,获取 token Flomo 官网获取 API,链接 https://flomoapp.com/mine?source=in

Zhen 44 Dec 30, 2022
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022
Code repository for "It's About Time: Analog clock Reading in the Wild"

it's about time Code repository for "It's About Time: Analog clock Reading in the Wild" Packages required: pytorch (used 1.9, any reasonable version s

52 Nov 10, 2022
Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Utkarsh Jain 1 Feb 17, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Generate a cool README/About me page for your Github Profile

Github Profile README/ About Me Generator 💯 This webapp lets you build a cool README for your profile. A few inputs + ~15 mins = Your Github Profile

Rahul Banerjee 179 Jan 07, 2023
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee

Wenlong Huang 114 Dec 29, 2022
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
Facilitating the design, comparison and sharing of deep text matching models.

MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News

Neural Text Matching Community 3.7k Jan 02, 2023
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
Text preprocessing, representation and visualization from zero to hero.

Text preprocessing, representation and visualization from zero to hero. From zero to hero • Installation • Getting Started • Examples • API • FAQ • Co

Jonathan Besomi 2.7k Jan 08, 2023