From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

Related tags

Deep LearningSESNet
Overview

SESNet for remote sensing image change detection

It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection". Here, we provide the pytorch implementation of this paper.

Prerequisites

  • windows or Linux
  • PyTorch-1.4.0
  • Python 3.6
  • CPU or NVIDIA GPU

Training

You can run a demo to start training.

python train.py

The network with the highest F1 score in the validation set will be saved in the folder tmp.

testing

You can run a demo to start testing.

python test.py

The F1_score, precision, recall, IoU and OA are displayed in order. Of course, you can slightly modify the code in the test.py file to save the confusion matrix.

Prepare Datasets

download the change detection dataset

SVCD is from the paper CHANGE DETECTION IN REMOTE SENSING IMAGES USING CONDITIONAL ADVERSARIAL NETWORKS, You could download the dataset at https://drive.google.com/file/d/1GX656JqqOyBi_Ef0w65kDGVto-nHrNs9;

LEVIR-CD is from the paper A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection, You could download the dataset at https://justchenhao.github.io/LEVIR/;

Take SVCD as an example, the path list in the downloaded folder is as follows:

├SVCD:
├  ├─train
├  │  ├─A
├  │  ├─B
├  │  ├─OUT
├  ├─val
├  │  ├─A
├  │  ├─B
├  │  ├─OUT
├  ├─test
├  │  ├─A
├  │  ├─B
├  │  ├─OUT

where A contains images of pre-phase, B contains images of post-phase, and OUT contains label maps.

When using the LEVIR-CD dataset, simply change the folder name from SVCD to LEVIR. The location of the dataset can be set in dataset_dir in the file metadata.json.

cut bitemporal image pairs (LEVIR-CD)

The original image in LEVIR-CD has a size of 1024 * 1024, which will consume too much memory when training. In our paper, we cut the original image into patches of 256 * 256 size without overlapping.

When running our code, please make sure that the file path of the cut image matches ours.

Define hyperparameters

The hyperparameters and dataset paths can be set in the file metadata.json.


"augmentation":  Data Enhancements
"num_gpus":      Number of simultaneous GPUs
"num_workers":   Number of simultaneous processes

"image_chanels": Number of channels of the image (3 for RGB images)
"init_channels": Adjust the overall number of channels in the network, the default is 32
"epochs":        Number of rounds of training
"batch_size":    Number of pictures in the same batch
"learning_rate": Learning Rate
"loss_function": The loss function is specified in the file `./utils/helpers.py`
"bilinear":      Up-sampling method of decoder feature maps, `False` means deconvolution, `True` means bilinear up-sampling

"dataset_dir":   Dataset path, "../SVCD/" means that the dataset `SVCD` is in the same directory as the folder `SESNet`.

Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022