From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

Related tags

Deep LearningSESNet
Overview

SESNet for remote sensing image change detection

It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection". Here, we provide the pytorch implementation of this paper.

Prerequisites

  • windows or Linux
  • PyTorch-1.4.0
  • Python 3.6
  • CPU or NVIDIA GPU

Training

You can run a demo to start training.

python train.py

The network with the highest F1 score in the validation set will be saved in the folder tmp.

testing

You can run a demo to start testing.

python test.py

The F1_score, precision, recall, IoU and OA are displayed in order. Of course, you can slightly modify the code in the test.py file to save the confusion matrix.

Prepare Datasets

download the change detection dataset

SVCD is from the paper CHANGE DETECTION IN REMOTE SENSING IMAGES USING CONDITIONAL ADVERSARIAL NETWORKS, You could download the dataset at https://drive.google.com/file/d/1GX656JqqOyBi_Ef0w65kDGVto-nHrNs9;

LEVIR-CD is from the paper A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection, You could download the dataset at https://justchenhao.github.io/LEVIR/;

Take SVCD as an example, the path list in the downloaded folder is as follows:

├SVCD:
├  ├─train
├  │  ├─A
├  │  ├─B
├  │  ├─OUT
├  ├─val
├  │  ├─A
├  │  ├─B
├  │  ├─OUT
├  ├─test
├  │  ├─A
├  │  ├─B
├  │  ├─OUT

where A contains images of pre-phase, B contains images of post-phase, and OUT contains label maps.

When using the LEVIR-CD dataset, simply change the folder name from SVCD to LEVIR. The location of the dataset can be set in dataset_dir in the file metadata.json.

cut bitemporal image pairs (LEVIR-CD)

The original image in LEVIR-CD has a size of 1024 * 1024, which will consume too much memory when training. In our paper, we cut the original image into patches of 256 * 256 size without overlapping.

When running our code, please make sure that the file path of the cut image matches ours.

Define hyperparameters

The hyperparameters and dataset paths can be set in the file metadata.json.


"augmentation":  Data Enhancements
"num_gpus":      Number of simultaneous GPUs
"num_workers":   Number of simultaneous processes

"image_chanels": Number of channels of the image (3 for RGB images)
"init_channels": Adjust the overall number of channels in the network, the default is 32
"epochs":        Number of rounds of training
"batch_size":    Number of pictures in the same batch
"learning_rate": Learning Rate
"loss_function": The loss function is specified in the file `./utils/helpers.py`
"bilinear":      Up-sampling method of decoder feature maps, `False` means deconvolution, `True` means bilinear up-sampling

"dataset_dir":   Dataset path, "../SVCD/" means that the dataset `SVCD` is in the same directory as the folder `SESNet`.

An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022