Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

Overview

LADA

This repo contains codes for the following paper:

Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augmentation for Semi-supervised NER. In Proceedings of The 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP'2020)

If you would like to refer to it, please cite the paper mentioned above.

Getting Started

These instructions will get you running the codes of LADA.

Requirements

  • Python 3.6 or higher
  • Pytorch >= 1.4.0
  • Pytorch_transformers (also known as transformers)
  • Pandas, Numpy, Pickle, faiss, sentence-transformers

Code Structure

├── code/
│   ├── BERT/
│   │   ├── back_translate.ipynb --> Jupyter Notebook for back translating the dataset
│   │   ├── bert_models.py --> Codes for LADA-based BERT models
│   │   ├── eval_utils.py --> Codes for evaluations
│   │   ├── knn.ipynb --> Jupyter Notebook for building the knn index file
│   │   ├── read_data.py --> Codes for data pre-processing
│   │   ├── train.py --> Codes for trianing BERT model
│   │   └── ...
│   ├── flair/
│   │   ├── train.py --> Codes for trianing flair model
│   │   ├── knn.ipynb --> Jupyter Notebook for building the knn index file
│   │   ├── flair/ --> the flair library
│   │   │   └── ...
│   │   ├── resources/
│   │   │   ├── docs/ --> flair library docs
│   │   │   ├── taggers/ --> save evaluation results for flair model
│   │   │   └── tasks/
│   │   │       └── conll_03/
│   │   │           ├── sent_id_knn_749.pkl --> knn index file
│   │   │           └── ... -> CoNLL-2003 dataset
│   │   └── ...
├── data/
│   └── conll2003/
│       ├── de.pkl -->Back translated training dataset with German as middle language
│       ├── labels.txt --> label index file
│       ├── sent_id_knn_700.pkl
│       └── ...  -> CoNLL-2003 dataset
├── eval/
│   └── conll2003/ --> save evaluation results for BERT model
└── README.md

BERT models

Downloading the data

Please download the CoNLL-2003 dataset and save under ./data/conll2003/ as train.txt, dev.txt, and test.txt.

Pre-processing the data

We utilize Fairseq to perform back translation on the training dataset. Please refer to ./code/BERT/back_translate.ipynb for details.

Here, we have put one example of back translated data, de.pkl, in ./data/conll2003/ . You can directly use it for CoNLL-2003 or generate your own back translated data following ./code/BERT/back_translate.ipynb.

We also provide the kNN index file for the first 700 training sentences (5%) ./data/conll2003/sent_id_knn_700.pkl. You can directly use it for CoNLL-2003 or generate your own kNN index file following ./code/BERT/knn.ipynb

Training models

These section contains instructions for training models on CoNLL-2003 using 5% training data.

Training BERT+Intra-LADA model

python ./code/BERT/train.py --data-dir 'data/conll2003' --model-type 'bert' \
--model-name 'bert-base-multilingual-cased' --output-dir 'eval/conll2003' --gpu '0,1' \
--labels 'data/conll2003/labels.txt' --max-seq-length 164 --overwrite-output-dir \
--do-train --do-eval --do-predict --evaluate-during-training --batch-size 16 \
--num-train-epochs 20 --save-steps 750 --seed 1 --train-examples 700  --eval-batch-size 128 \
--pad-subtoken-with-real-label --eval-pad-subtoken-with-first-subtoken-only --label-sep-cls \
--mix-layers-set 8 9 10  --beta 1.5 --alpha 60  --mix-option --use-knn-train-data \
--num-knn-k 5 --knn-mix-ratio 0.5 --intra-mix-ratio 1 

Training BERT+Inter-LADA model

python ./code/BERT/train.py --data-dir 'data/conll2003' --model-type 'bert' \
--model-name 'bert-base-multilingual-cased' --output-dir 'eval/conll2003' --gpu '0,1' \
--labels 'data/conll2003/labels.txt' --max-seq-length 164 --overwrite-output-dir \
--do-train --do-eval --do-predict --evaluate-during-training --batch-size 16 \
--num-train-epochs 20 --save-steps 750 --seed 1 --train-examples 700  --eval-batch-size 128 \ 
--pad-subtoken-with-real-label --eval-pad-subtoken-with-first-subtoken-only --label-sep-cls \ 
--mix-layers-set 8 9 10  --beta 1.5 --alpha 60  --mix-option --use-knn-train-data \
--num-knn-k 5 --knn-mix-ratio 0.5 --intra-mix-ratio -1  

Training BERT+Semi-Intra-LADA model

python ./code/BERT/train.py --data-dir 'data/conll2003' --model-type 'bert' \
--model-name 'bert-base-multilingual-cased' --output-dir 'eval/conll2003' --gpu '0,1' \
--labels 'data/conll2003/labels.txt' --max-seq-length 164 --overwrite-output-dir \
--do-train --do-eval --do-predict --evaluate-during-training --batch-size 16 \
--num-train-epochs 20 --save-steps 750 --seed 1 --train-examples 700  --eval-batch-size 128 \
--pad-subtoken-with-real-label --eval-pad-subtoken-with-first-subtoken-only --label-sep-cls \
--mix-layers-set 8 9 10  --beta 1.5 --alpha 60  --mix-option --use-knn-train-data \
--num-knn-k 5 --knn-mix-ratio 0.5 --intra-mix-ratio 1 \
--u-batch-size 32 --semi --T 0.6 --sharp --weight 0.05 --semi-pkl-file 'de.pkl' \
--semi-num 10000 --semi-loss 'mse' --ignore-last-n-label 4  --warmup-semi --num-semi-iter 1 \
--semi-loss-method 'origin' 

Training BERT+Semi-Inter-LADA model

python ./code/BERT/train.py --data-dir 'data/conll2003' --model-type 'bert' \
--model-name 'bert-base-multilingual-cased' --output-dir 'eval/conll2003' --gpu '0,1' \
--labels 'data/conll2003/labels.txt' --max-seq-length 164 --overwrite-output-dir \
--do-train --do-eval --do-predict --evaluate-during-training --batch-size 16 \
--num-train-epochs 20 --save-steps 750 --seed 1 --train-examples 700  --eval-batch-size 128 \ 
--pad-subtoken-with-real-label --eval-pad-subtoken-with-first-subtoken-only --label-sep-cls \
--mix-layers-set 8 9 10  --beta 1.5 --alpha 60  --mix-option --use-knn-train-data \
--num-knn-k 5 --knn-mix-ratio 0.5 --intra-mix-ratio -1 \
--u-batch-size 32 --semi --T 0.6 --sharp --weight 0.05 --semi-pkl-file 'de.pkl' \
--semi-num 10000 --semi-loss 'mse' --ignore-last-n-label 4  --warmup-semi --num-semi-iter 1 \
--semi-loss-method 'origin' 

flair models

flair is a BiLSTM-CRF sequence labeling model, and we provide code for flair+Inter-LADA

Downloading the data

Please download the CoNLL-2003 dataset and save under ./code/flair/resources/tasks/conll_03/ as eng.train, eng.testa (dev), and eng.testb (test).

Pre-processing the data

We also provide the kNN index file for the first 749 training sentences (5%, including the -DOCSTART- seperator) ./code/flair/resources/tasks/conll_03/sent_id_knn_749.pkl. You can directly use it for CoNLL-2003 or generate your own kNN index file following ./code/flair/knn.ipynb

Training models

These section contains instructions for training models on CoNLL-2003 using 5% training data.

Training flair+Inter-LADA model

CUDA_VISIBLE_DEVICES=1 python ./code/flair/train.py --use-knn-train-data --num-knn-k 5 \
--knn-mix-ratio 0.6 --train-examples 749 --mix-layer 2  --mix-option --alpha 60 --beta 1.5 \
--exp-save-name 'mix'  --mini-batch-size 64  --patience 10 --use-crf 
Owner
GT-SALT
Social and Language Technologies Lab
GT-SALT
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022