[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

Overview

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

Accepted as a spotlight paper at ICLR 2021.

Table of content

File structure

.
├── hw_nas_bench_api # HW-NAS-Bench API
│   ├── fbnet_models # FBNet's space
│   └── nas_201_models # NAS-Bench-201's space
│       ├── cell_infers
│       ├── cell_searchs
│       ├── config_utils
│       ├── shape_infers
│       └── shape_searchs
└── nas_201_api # NAS-Bench-201 API

Prerequisites

The code has the following dependencies:

  • python >= 3.6.10
  • pytorch >= 1.2.0
  • numpy >= 1.18.5

Preparation and download

No addtional file needs to be downloaded, our HW-NAS-Bench dataset has been included in this repository.

[Optional] If you want to use NAS-Bench-201 to access information about the architectures' accuracy and loss, please follow the NAS-Bench-201 guide, and download the NAS-Bench-201-v1_1-096897.pth.

How to use HW-NAS-Bench

More usage can be found in our jupyter notebook example

  1. Create an API instance from a file:
from hw_nas_bench_api import HWNASBenchAPI as HWAPI
hw_api = HWAPI("HW-NAS-Bench-v1_0.pickle", search_space="nasbench201")
  1. Show the real measured/estimated hardware-cost in different datasets:
# Example to get all the hardware metrics in the No.0,1,2 architectures under NAS-Bench-201's Space
for idx in range(3):
    for dataset in ["cifar10", "cifar100", "ImageNet16-120"]:
        HW_metrics = hw_api.query_by_index(idx, dataset)
        print("The HW_metrics (type: {}) for No.{} @ {} under NAS-Bench-201: {}".format(type(HW_metrics),

Corresponding printed information:

===> Example to get all the hardware metrics in the No.0,1,2 architectures under NAS-Bench-201's Space
The HW_metrics (type: <class 'dict'>) for No.0 @ cifar10 under NAS-Bench-201: {'edgegpu_latency': 5.807418537139893, 'edgegpu_energy': 24.226614330768584, 'raspi4_latency': 10.481976820010459, 'edgetpu_latency': 0.9571811309997429, 'pixel3_latency': 3.6058499999999998, 'eyeriss_latency': 3.645620000000001, 'eyeriss_energy': 0.6872827644999999, 'fpga_latency': 2.57296, 'fpga_energy': 18.01072}
...
  1. Show the real measured/estimated hardware-cost for a single architecture:
# Example to get use the hardware metrics in the No.0 architectures in CIFAR-10 under NAS-Bench-201's Space
print("===> Example to get use the hardware metrics in the No.0 architectures in CIFAR-10 under NAS-Bench-201's Space")
HW_metrics = hw_api.query_by_index(0, "cifar10")
for k in HW_metrics:
    if "latency" in k:
        unit = "ms"
    else:
        unit = "mJ"
    print("{}: {} ({})".format(k, HW_metrics[k], unit))

Corresponding printed information:

===> Example to get use the hardware metrics in the No.0 architectures in CIFAR-10 under NAS-Bench-201's Space
edgegpu_latency: 5.807418537139893 (ms)
edgegpu_energy: 24.226614330768584 (mJ)
raspi4_latency: 10.481976820010459 (ms)
edgetpu_latency: 0.9571811309997429 (ms)
pixel3_latency: 3.6058499999999998 (ms)
eyeriss_latency: 3.645620000000001 (ms)
eyeriss_energy: 0.6872827644999999 (mJ)
fpga_latency: 2.57296 (ms)
fpga_energy: 18.01072 (mJ)
  1. Create the network from api:
# Create the network
config = hw_api.get_net_config(0, "cifar10")
print(config)
from hw_nas_bench_api.nas_201_models import get_cell_based_tiny_net
network = get_cell_based_tiny_net(config) # create the network from configurration
print(network) # show the structure of this architecture

Corresponding printed information:

{'name': 'infer.tiny', 'C': 16, 'N': 5, 'arch_str': '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'num_classes': 10}
TinyNetwork(
  TinyNetwork(C=16, N=5, L=17)
  (stem): Sequential(
    (0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (cells): ModuleList(
    (0): InferCell(
      info :: nodes=4, inC=16, outC=16, [1<-(I0-L0) | 2<-(I0-L1,I1-L2) | 3<-(I0-L3,I1-L4,I2-L5)], |avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|
      (layers): ModuleList(
        (0): POOLING(
          (op): AvgPool2d(kernel_size=3, stride=1, padding=1)
        )
        (1): ReLUConvBN(
...

Misc

Part of the devices used in HW-NAS-Bench:

Part of the devices used in HW-NAS-Bench

Acknowledgment

Owner
Efficient and Intelligent Computing Lab
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022