Relative Uncertainty Learning for Facial Expression Recognition

Overview

Relative Uncertainty Learning for Facial Expression Recognition

The official implementation of the following paper at NeurIPS2021:
Title: Relative Uncertainty Learning for Facial Expression Recognition
Authors: Yuhang Zhang, Chengrui Wang, Weihong Deng
Institute: BUPT

Abstract

In facial expression recognition (FER), the uncertainties introduced by inherent noises like ambiguous facial expressions and inconsistent labels raise concerns about the credibility of recognition results. To quantify these uncertainties and achieve good performance under noisy data, we regard uncertainty as a relative concept and propose an innovative uncertainty learning method called Relative Uncertainty Learning (RUL). Rather than assuming Gaussian uncertainty distributions for all datasets, RUL builds an extra branch to learn uncertainty from the relative difficulty of samples by feature mixup. Specifically, we use uncertainties as weights to mix facial features and design an add-up loss to encourage uncertainty learning. It is easy to implement and adds little or no extra computation overhead. Extensive experiments show that RUL outperforms state-of-the-art FER uncertainty learning methods in both real-world and synthetic noisy FER datasets. Besides, RUL also works well on other datasets such as CIFAR and Tiny ImageNet.

Pipeline

Feature Visualization

The feature distribution figure shows that RUL encourages intra-class compactness and inter-class seperability of the learned features. (0:Surprise, 1:Fear, 2:Disgust, 3:Happy, 4:Sad, 5:Angry, 6:Neutral)

Train

Torch

We train RUL with Torch 1.8.0 and torchvision 0.9.0.

Dataset

Download RAF-DB, put it into the dataset folder, and make sure that it has the same structure as bellow:

- dataset/raf-basic/
         EmoLabel/
             list_patition_label.txt
         Image/aligned/
	     train_00001_aligned.jpg
             test_0001_aligned.jpg
             ...

Pretrained backbone model

Download the pretrained ResNet18 from this github repository, and then put it into the pretrained_model directory. We thank the authors for providing their pretrained ResNet model.

Train the RUL model

cd src
python main.py --raf_path '../dataset/raf-basic' --label_path '../dataset/raf-basic/EmoLabel/list_patition_label.txt' --pretrained_backbone_path '../pretrained_model/resnet18_msceleb.pth'

Accuracy

Acknowledgments

Our work is based on the following works, thanks for their code and pretrained model:

https://github.com/kaiwang960112/Self-Cure-Network

https://github.com/Ontheway361/dul-pytorch

https://github.com/amirhfarzaneh/dacl

Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022