Deeplearning project at The Technological University of Denmark (DTU) about Neural ODEs for finding dynamics in ordinary differential equations and real world time series data

Overview

Authors

Marcus Lenler Garsdal, [email protected]

Valdemar Søgaard, [email protected]

Simon Moe Sørensen, [email protected]

Introduction

This repo contains the code used for the paper Time series data estimation using Neural ODE in Variational Auto Encoders.

Using pytorch and Neural ODEs (NODEs) it attempts to learn the true dynamics of time series data using toy examples such as clockwise and counterclockwise spirals, and three different examples of sine waves: first a standard non-dampened sine wave, second a dampened sine wave, third an exponentially decaying and dampened sine wave. Finally, the NODE is trained on real world time series data of solar power curves.

The performance of the NODEs are compared to an LSTM VAE baseline on RMSE error and time per epoch.

This project is a purely research and curiosity based project.

Code structure

To make development and research more seamless, an object-oriented approach was taken to improve efficiency and consistency across multiple runs. This also makes it easier to extend and change workflows across multiple models at once.

Source files

The src folder contains the source code. The main components of the source code are:

  • data.py: Data loading object. Primarily uses data generation functions.
  • model.py: Contains model implementations and the abstract TrainerModel class which defines models in the trainer.py file.
  • train.py: A generalized Trainer class used to train subclasses of the TrainerModel class. Moreover, it saves and loads different types of models and handles model visualizations.
  • utils.py: Standard utility functions
  • visualize.py: Visualizes model properties such as reconstructions, loss curves and original data samples

Experiments

In addition, there are three folders for each type of dataset:

  • real/: Contains data for solar power curves and main script for training the solar power model
  • spring/: Generates spring examples and trains spring models
  • toy/: Generates spiral examples and trains spiral models

Each main.py script takes a number of relevant parameters as input to enable parameter tuning, experimentation of different model types, dataset sizes and types. These can be read from the respective files.

Running the code

To run the code use the following code in a terminal with the project root as working directory: python -m src.[dataset].main [--args]

For example: python3 -m src.toy.main --epochs 1000 --freq 100 --num-data 500 --n-total 300 --n-sample 200 --n-skip 1 --latent-dim 4 --hidden-dim 30 --lstm-hidden-dim 45 --lstm-layers 2 --lr 0.001 --solver rk4

Setup environment

Create a new python environment and install the packages from requirements.txt using

pip install -r requirements.txt

Run python notebook

Install Jupyter with pip install jupyter and run a server using jupyter notebook or any supported software such as Anaconda.

Then open run_experiments.ipynb and run the first cell. If the cell succeeds, you should see outputs in experiment/output/png/**

Owner
Simon Moe Sørensen
Studying MSc Business Analytics - Predictive Modelling at DTU
Simon Moe Sørensen
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021