Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Overview

Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Surfels TSDF Our Approach
suma tsdf puma

Table: Qualitative comparison between the different mapping techniques for sequence 00 of the KITTI odometry benchmark.

This repository implements the algorithms described in our paper Poisson Surface Reconstruction for LiDAR Odometry and Mapping.

This is a LiDAR Odometry and Mapping pipeline that uses the Poisson Surface Reconstruction algorithm to build the map as a triangular mesh.

We propose a novel frame-to-mesh registration algorithm where we compute the poses of the vehicle by estimating the 6 degrees of freedom of the LiDAR. To achieve this, we project each scan to the triangular mesh by computing the ray-to-triangle intersections between each point in the input scan and the map mesh. We accelerate this ray-casting technique using a python wrapper of the Intel® Embree library.

The main application of our research is intended for autonomous driving vehicles.

Table of Contents

Running the code

NOTE: All the commands assume you are working on this shared workspace, therefore, first cd apps/ before running anything.

Requirements: Install docker

If you plan to use our docker container you only need to install docker and docker-compose.

If you don't want to use docker and install puma locally you might want to visit the Installation Instructions

Datasets

First, you need to indicate where are all your datasets, for doing so just:

export DATASETS=<full-path-to-datasets-location>

This env variable is shared between the docker container and your host system(in a read-only fashion).

So far we've only tested our approach on the KITTI Odometry benchmark dataset and the Mai city dataset. Both datasets are using a 64-beam Velodyne like LiDAR.

Building the apss docker container

This container is in charge of running the apss and needs to be built with your user and group id (so you can share files). Building this container is straightforward thanks to the provided Makefile:

make

If you want' to inspect the image you can get an interactive shell by running make run, but it's not mandatory.

Converting from .bin to .ply

All our apps use the PLY which is also binary but has much better support than just raw binary files. Therefore, you will need to convert all your data before running any of the apps available in this repo.

docker-compose run --rm apps bash -c '\
    ./data_conversion/bin2ply.py \
    --dataset $DATASETS/kitti-odometry/dataset/ \
    --out_dir ./data/kitti-odometry/ply/ \
    --sequence 07
    '

Please change the --dataset option to point to where you have the KITTI dataset.

Running the puma pipeline

Go grab a coffee/mate, this will take some time...

docker-compose run --rm apps bash -c '\
    ./pipelines/slam/puma_pipeline.py  \
    --dataset ./data/kitti-odometry/ply \
    --sequence 07 \
    --n_scans 40
    '

Inspecting the results

The pipelines/slam/puma_pipeline.py will generate 3 files on your host sytem:

results
├── kitti-odometry_07_depth_10_cropped_p2l_raycasting.ply # <- Generated Model
├── kitti-odometry_07_depth_10_cropped_p2l_raycasting.txt # <- Estimated poses
└── kitti-odometry_07_depth_10_cropped_p2l_raycasting.yml # <- Configuration

You can open the .ply with Open3D, Meshlab, CloudCompare, or the tool you like the most.

Where to go next

If you already installed puma then it's time to look for the standalone apps. These apps are executable command line interfaces (CLI) to interact with the core puma code:

├── data_conversion
│   ├── bin2bag.py
│   ├── kitti2ply.py
│   ├── ply2bin.py
│   └── ros2ply.py
├── pipelines
│   ├── mapping
│   │   ├── build_gt_cloud.py
│   │   ├── build_gt_mesh_incremental.py
│   │   └── build_gt_mesh.py
│   ├── odometry
│   │   ├── icp_frame_2_frame.py
│   │   ├── icp_frame_2_map.py
│   │   └── icp_frame_2_mesh.py
│   └── slam
│       └── puma_pipeline.py
└── run_poisson.py

All the apps should have an usable command line interface, so if you need help you only need to pass the --help flag to the app you wish to use. For example let's see the help message of the data conversion app bin2ply.py used above:

Usage: bin2ply.py [OPTIONS]

  Utility script to convert from the binary form found in the KITTI odometry
  dataset to .ply files. The intensity value for each measurement is encoded
  in the color channel of the output PointCloud.

  If a given sequence it's specified then it assumes you have a clean copy
  of the KITTI odometry benchmark, because it uses pykitti. If you only have
  a folder with just .bin files the script will most likely fail.

  If no sequence is specified then it blindly reads all the *.bin file in
  the specified dataset directory

Options:
  -d, --dataset PATH   Location of the KITTI dataset  [default:
                       /home/ivizzo/data/kitti-odometry/dataset/]

  -o, --out_dir PATH   Where to store the results  [default:
                       /home/ivizzo/data/kitti-odometry/ply/]

  -s, --sequence TEXT  Sequence number
  --use_intensity      Encode the intensity value in the color channel
  --help               Show this message and exit.

Citation

If you use this library for any academic work, please cite the original paper.

@inproceedings{vizzo2021icra,
author    = {I. Vizzo and X. Chen and N. Chebrolu and J. Behley and C. Stachniss},
title     = {{Poisson Surface Reconstruction for LiDAR Odometry and Mapping}},
booktitle = {Proc.~of the IEEE Intl.~Conf.~on Robotics \& Automation (ICRA)},
codeurl   = {https://github.com/PRBonn/puma/},
year      = 2021,
}
Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022