Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

Related tags

Text Data & NLPpiqn
Overview

README

Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model and experiments, please see our paper.

Setup

Requirements

conda create --name acl python=3.8
conda activate acl
pip install -r requirements.txt

Datasets

Nested NER:

Flat NER:

Data format:

{
    "tokens": ["Others", ",", "though", ",", "are", "novices", "."], 
    "entities": [{"type": "PER", "start": 0, "end": 1}, {"type": "PER", "start": 5, "end": 6}], "relations": [], "org_id": "CNN_IP_20030328.1600.07", 
    "ltokens": ["WOODRUFF", "We", "know", "that", "some", "of", "the", "American", "troops", "now", "fighting", "in", "Iraq", "are", "longtime", "veterans", "of", "warfare", ",", "probably", "not", "most", ",", "but", "some", ".", "Their", "military", "service", "goes", "back", "to", "the", "Vietnam", "era", "."], 
    "rtokens": ["So", "what", "is", "it", "like", "for", "them", "to", "face", "combat", "far", "from", "home", "?", "For", "an", "idea", ",", "here", "is", "CNN", "'s", "Candy", "Crowley", "with", "some", "war", "stories", "."]
}

The ltokens contains the tokens from the previous sentence. And The rtokens contains the tokens from the next sentence.

Due to the license, we cannot directly release our preprocessed datasets of ACE04, ACE05, KBP17, NNE and OntoNotes. We only release the preprocessed GENIA, FewNERD, MSRA and CoNLL03 datasets. Download them from here.

If you need other datasets, please contact me ([email protected]) by email. Note that you need to state your identity and prove that you have obtained the license.

Example

Train

python piqn.py train --config configs/nested.conf

Note: You should edit this line in config_reader.py according to the actual number of GPUs.

Evaluation

You can download our checkpoints on ACE04 and ACE05, or train your own model and then evaluate the model. Because of the limited space of Google Cloud Drive, we share the other models in Baidu Cloud Drive, please download at this link (code: js9z).

python identifier.py eval --config configs/batch_eval.conf

If you use the checkpoints (ACE05 and ACE04) we provided, you will get the following results:

  • ACE05:
2022-03-30 12:56:52,447 [MainThread  ] [INFO ]  --- NER ---
2022-03-30 12:56:52,447 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   PER        88.07        92.92        90.43         1724
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   LOC        63.93        73.58        68.42           53
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   WEA        86.27        88.00        87.13           50
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   GPE        87.22        87.65        87.44          405
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   ORG        85.74        81.64        83.64          523
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   VEH        83.87        77.23        80.41          101
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                   FAC        75.54        77.21        76.36          136
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                 micro        86.38        88.57        87.46         2992
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]                 macro        81.52        82.61        81.98         2992
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]  --- NER on Localization ---
2022-03-30 12:56:52,475 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]                Entity        90.58        92.91        91.73         2991
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]                 micro        90.58        92.91        91.73         2991
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]                 macro        90.58        92.91        91.73         2991
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]  --- NER on Classification ---
2022-03-30 12:56:52,496 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   PER        97.09        92.92        94.96         1724
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   LOC        76.47        73.58        75.00           53
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   WEA        95.65        88.00        91.67           50
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   GPE        92.93        87.65        90.22          405
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   ORG        93.85        81.64        87.32          523
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   VEH       100.00        77.23        87.15          101
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                   FAC        89.74        77.21        83.00          136
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]  
2022-03-30 12:56:52,516 [MainThread  ] [INFO ]                 micro        95.36        88.57        91.84         2992
2022-03-30 12:56:52,517 [MainThread  ] [INFO ]                 macro        92.25        82.61        87.05         2992
  • ACE04
2021-11-15 22:06:50,896 [MainThread  ] [INFO ]  --- NER ---
2021-11-15 22:06:50,896 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   VEH        88.89        94.12        91.43           17
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   WEA        74.07        62.50        67.80           32
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   GPE        89.11        87.62        88.36          719
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   ORG        85.06        84.60        84.83          552
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   FAC        83.15        66.07        73.63          112
2021-11-15 22:06:50,932 [MainThread  ] [INFO ]                   PER        91.09        92.12        91.60         1498
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]                   LOC        72.90        74.29        73.58          105
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]                 micro        88.48        87.81        88.14         3035
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]                 macro        83.47        80.19        81.61         3035
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]  --- NER on Localization ---
2021-11-15 22:06:50,933 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]                Entity        92.56        91.89        92.23         3034
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]                 micro        92.56        91.89        92.23         3034
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]                 macro        92.56        91.89        92.23         3034
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,954 [MainThread  ] [INFO ]  --- NER on Classification ---
2021-11-15 22:06:50,955 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                  type    precision       recall     f1-score      support
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   VEH        94.12        94.12        94.12           17
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   WEA        95.24        62.50        75.47           32
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   GPE        95.60        87.62        91.44          719
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   ORG        93.59        84.60        88.87          552
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   FAC        93.67        66.07        77.49          112
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   PER        97.11        92.12        94.55         1498
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                   LOC        84.78        74.29        79.19          105
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]  
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                 micro        95.59        87.81        91.53         3035
2021-11-15 22:06:50,976 [MainThread  ] [INFO ]                 macro        93.44        80.19        85.87         3035

Citation

If you have any questions related to the code or the paper, feel free to email [email protected].

@inproceedings{shen-etal-2022-piqn,
    title = "Parallel Instance Query Network for Named Entity Recognition",
    author = "Shen, Yongliang  and
      Wang, Xiaobin  and
      Tan, Zeqi  and
      Xu, Guangwei  and
      Xie, Pengjun  and
      Huang, Fei and
      Lu, Weiming and
      Zhuang, Yueting",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics",
    year = "2022",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2203.10545",
}
Owner
Yongliang Shen
Knowledge is power.
Yongliang Shen
Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

patterns-finder Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Ex

22 Dec 19, 2022
This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

LipGAN Generate realistic talking faces for any human speech and face identity. [Paper] | [Project Page] | [Demonstration Video] Important Update: A n

Rudrabha Mukhopadhyay 438 Dec 31, 2022
Deep Learning Topics with Computer Vision & NLP

Deep learning Udacity Course Deep Learning Topics with Computer Vision & NLP for the AWS Machine Learning Engineer Nanodegree Program Tasks are mostly

Simona Mircheva 1 Jan 20, 2022
jiant is an NLP toolkit

jiant is an NLP toolkit The multitask and transfer learning toolkit for natural language processing research Why should I use jiant? jiant supports mu

ML² AT CILVR 1.5k Jan 04, 2023
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
OpenChat: Opensource chatting framework for generative models

OpenChat is opensource chatting framework for generative models.

Hyunwoong Ko 427 Jan 06, 2023
Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.

TRICE: a task-agnostic transferring framework for multi-source sequence generation This is the source code of our work Transfer Learning for Sequence

THUNLP-MT 9 Jun 27, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
NLP-based analysis of poor Chinese movie reviews on Douban

douban_embedding 豆瓣中文影评差评分析 1. NLP NLP(Natural Language Processing)是指自然语言处理,他的目的是让计算机可以听懂人话。 下面是我将2万条豆瓣影评训练之后,随意输入一段新影评交给神经网络,最终AI推断出的结果。 "很好,演技不错

3 Apr 15, 2022
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
Python package for performing Entity and Text Matching using Deep Learning.

DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util

461 Dec 28, 2022
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023