Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

Overview

CTC Decoding Algorithms

Update 2021: installable Python package

Python implementation of some common Connectionist Temporal Classification (CTC) decoding algorithms. A minimalistic language model is provided.

Installation

  • Go to the root level of the repository
  • Execute pip install .
  • Go to tests/ and execute pytest to check if installation worked

Usage

Basic usage

Here is a minimalistic executable example:

import numpy as np
from ctc_decoder import best_path, beam_search

mat = np.array([[0.4, 0, 0.6], [0.4, 0, 0.6]])
chars = 'ab'

print(f'Best path: "{best_path(mat, chars)}"')
print(f'Beam search: "{beam_search(mat, chars)}"')

The output mat (numpy array, softmax already applied) of the CTC-trained neural network is expected to have shape TxC and is passed as the first argument to the decoders. T is the number of time-steps, and C the number of characters (the CTC-blank is the last element). The characters that can be predicted by the neural network are passed as the chars string to the decoder. Decoders return the decoded string.
Running the code outputs:

Best path: ""
Beam search: "a"

To see more examples on how to use the decoders, please have a look at the scripts in the tests/ folder.

Language model and BK-tree

Beam search can optionally integrate a character-level language model. Text statistics (bigrams) are used by beam search to improve reading accuracy.

from ctc_decoder import beam_search, LanguageModel

# create language model instance from a (large) text
lm = LanguageModel('this is some text', chars)

# and use it in the beam search decoder
res = beam_search(mat, chars, lm=lm)

The lexicon search decoder computes a first approximation with best path decoding. Then, it uses a BK-tree to retrieve similar words, scores them and finally returns the best scoring word. The BK-tree is created by providing a list of dictionary words. A tolerance parameter defines the maximum edit distance from the query word to the returned dictionary words.

from ctc_decoder import lexicon_search, BKTree

# create BK-tree from a list of words
bk_tree = BKTree(['words', 'from', 'a', 'dictionary'])

# and use the tree in the lexicon search
res = lexicon_search(mat, chars, bk_tree, tolerance=2)

Usage with deep learning frameworks

Some notes:

  • No adapter for TensorFlow or PyTorch is provided
  • Apply softmax already in the model
  • Convert to numpy array
  • Usually, the output of an RNN layer rnn_output has shape TxBxC, with B the batch dimension
    • Decoders work on single batch elements of shape TxC
    • Therefore, iterate over all batch elements and apply the decoder to each of them separately
    • Example: extract matrix of batch element 0 mat = rnn_output[:, 0, :]
  • The CTC-blank is expected to be the last element along the character dimension
    • TensorFlow has the CTC-blank as last element, so nothing to do here
    • PyTorch, however, has the CTC-blank as first element by default, so you have to move it to the end, or change the default setting

List of provided decoders

Recommended decoders:

  • best_path: best path (or greedy) decoder, the fastest of all algorithms, however, other decoders often perform better
  • beam_search: beam search decoder, optionally integrates a character-level language model, can be tuned via the beam width parameter
  • lexicon_search: lexicon search decoder, returns the best scoring word from a dictionary

Other decoders, from my experience not really suited for practical purposes, but might be used for experiments or research:

  • prefix_search: prefix search decoder
  • token_passing: token passing algorithm
  • Best path decoder implementation in OpenCL (see extras/ folder)

This paper gives suggestions when to use best path decoding, beam search decoding and token passing.

Documentation of test cases and data

References

Owner
Harald Scheidl
Interested in computer vision, deep learning, C++ and Python.
Harald Scheidl
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
Unet-TTS: Improving Unseen Speaker and Style Transfer in One-shot Voice Cloning

Unet-TTS: Improving Unseen Speaker and Style Transfer in One-shot Voice Cloning English | 中文 ❗ Now we provide inferencing code and pre-training models

164 Jan 02, 2023
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
A Streamlit web app that generates Rick and Morty stories using GPT2.

Rick and Morty Story Generator This project uses a pre-trained GPT2 model, which was fine-tuned on Rick and Morty transcripts, to generate new stories

₸ornike 33 Oct 13, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Codes to pre-train Japanese T5 models

t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug

Megagon Labs 37 Dec 25, 2022
超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新

bert4pytorch 2021年8月27更新: 感谢大家的star,最近有小伙伴反映了一些小的bug,我也注意到了,奈何这个月工作上实在太忙,更新不及时,大约会在9月中旬集中更新一个只需要pip一下就完全可用的版本,然后会新添加一些关键注释。 再增加对抗训练的内容,更新一个完整的finetune

muqiu 317 Dec 18, 2022
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023